簡易檢索 / 詳目顯示

研究生: 黃志鈞
Huang, Chih-Chun
論文名稱: 以FPGA為主不斷電系統控制器之研製
Implementation of FPGA-Based Uninterruptible Power Supply Controller
指導教授: 陳建富
Chen, Jiann-Fuh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 113
中文關鍵詞: 不斷電系統系統單晶片功率因數修正換流器雙向轉換器
外文關鍵詞: System on chip, Uninterruptible power supplies, Power factor correction, Inverter, bidirectional DC converter.
相關次數: 點閱:74下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於不斷電系統的控制器,快速的運算表示可以在同一個時間內可做大量的運算。FPGA的運算流程直接且快速的,所以使用FPGA控制器可以完成快速且複雜的運算。
    本論文採用FPGA的方式來控制不斷電系統,FPGA不但可以寫入複雜的演算法,以達到不斷線系統得控制需求,也可以進行平行處裡運算,以達到快速的系統控制運算速度。此外,系統單晶片控制可以經過數位晶片的製程流程後製作成為數位晶片。
    使用FPGA(DE1-SoC)驗證功能與實作不斷電系統,輸入電網電壓為220V、電池電壓為70V、輸出電壓為220V、輸出最大功率為2000W。

    For the controller of Uninterruptible Power Supply, fast calculation speed means to do large calculation in s short time. The calculation method of FPGA is direct and fast, so FPGA controller is able to reach fast and complex calculation.
    FPGA is used for uninterruptible power supplies control in the thesis. System on chip is not only able to contain complex algorithm to reach uninterruptible power supplies requirements, but also able to use parallel process to get faster calculation speed. Besides, digital IC is made by FPGA through digital IC process.
    Use the field programmable gate array (FPGA) to verify the circuit and the digital controller are presented. A prototype converter with the input AC voltage 220Vr.m.s., output voltage 220Vr.m.s., battery voltage 70V and output power 400W ~ 2000W is implemented to verify the theoretical.

    CHINESE ABSTRACT I ENGLISH ABSTRACT II ACKNOWLEDGE III CONTEST IV LIST OF FIGURES VIII LIST OF TABLES XIV CHAPTER 1 INTRODUCTION 1 1.1 Backgrounds of Research and Motivation 1 1.1.1 Uninterruptible Power Supplies 1 1.1.2 System on Chip in UPS 4 1.2 Content of Research 4 1.3 Organization of Thesis 5 CHAPTER 2 CONTROLLER OF CONVERTER 7 2.1 Analog Controller 7 2.2 Digital controller 8 2.2.1 MCU calculation structure 8 2.2.2 Field-Programmable Gate Array 10 2.2.3 Comparison between MCU and FPGA for Converter Control 13 CHAPTER 3 SYSTEM INTRODUCTION 14 3.1 UPS circuit 15 3.1.1 Power Factor Correction (PFC) Rectifier 16 3.1.2 Pulse Width Modulation (PWM) Inverter 17 3.1.3 Battery Average System 18 3.2 Sensor Circuit 19 3.2.1 Dividing Circuit 19 3.2.2 Analog to Digital Circuit 20 3.3 Controller circuit 21 CHAPTER 4 ANALYSIS OF THE CIRCUIT DESIGN 22 4.1 Analysis of Power Factor Corrector Rectifier 22 4.1.1 Introduction of Power Factor Corrector Rectifier 22 4.1.2 Conventional PFC Rectifier Control Method 24 4.1.3 Topology and Operation Modes 29 4.1.4 Component Design 38 4.2 Analysis of PWM Inverter 39 4.2.1 Introduction of PWM Inverter 39 4.2.2 Conventional PWM Inverter Control Method 40 4.2.3 Topology and Operation Modes 43 4.2.4 Component Design 52 4.3 Analysis of Battery Average System 53 4.3.1 Introduction 53 4.3.2 Conventional Battery Average System Parts 54 4.3.3 Operation Modes 57 4.3.4 Component Design 69 4.4 Analysis of Surrounding Circuit 70 4.4.1 Sensor Dividing Circuit 71 4.4.2 ADC circuit 73 4.4.3 Component Design 75 CHAPTER 5 DESIGN AND IMPLEMENT OF UPS 78 5.1 Control System Design 79 5.1.1 System Introduction 79 5.1.2 Counter 80 5.1.3 Mode Controller 81 5.1.4 Sensor Controller 83 5.1.5 Input Register 84 5.1.6 PWM generator 85 5.1.7 P control 86 5.1.8 PFC rectifier control system 87 5.1.9 PWM Inverter control system 89 5.1.10 Battery Average system 91 5.2 Experiment Result 92 5.2.1 Specifications and Parameters 92 5.2.2 PFC Rectifier Experiment Result 94 5.2.3 PWM Inverter Experiment Result 99 5.2.4 Battery Average System Experiment Result 103 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS 109 6.1 Conclusions 109 6.2 Future Works 110 REFERENCE 111

    [1] F. Kamran, and T. G. Habetler, "A Novel On-Line UPS with Universal Filtering Capabilities," IEEE TRANSACTIONS ON POWER ELECTRONICS, pp. VOL. 13, NO. 3, MAY 1998.
    [2] C. C. Yeh and M. D. Manjrekar, “A Reconfigurable Uninterruptible Power Supply System for Multiple Power Quality Applications,” IEEE TRANSACTIONS ON POWER ELECTRONICS, pp. VOL. 22, NO. 4,, JUL. 2007.
    [3] S. Karve, “Three of a kind [UPS Topologies, IEC Standard],” Proc. Inst. Elect. Eng. Review, pp. vol. 46, no. 2, pp. 27–31, MAR. 2000.
    [4] W. J. Raddi and R. W. Johnson, “An utility interactive PWM sine wave inverter configured as a high efficiency UPS,”,” Proc. IEEE Int. Telecommunication Energy Conf., pp. pp. 42–48, Intelec 82., 1982.
    [5] S. Rathmann and H. A.Warner, “New generation UPS technology, the delta conversion principle,” Conf. Proc. 31st IEEE Industry Applications Soc. Annu. Meeting, pp. vol. 4, pp. 2389–2395, OCT. 1996.
    [6] N. Vázquez, C. Aguilar and J. Arau, Senior Member, “A Novel Uninterruptible Power Supply System With Active Power Factor Correction,” IEEE TRANSACTIONS ON POWER ELECTRONICS, pp. VOL. 17, NO. 3,, MAY 2002.
    [7] A. Nasiri and Z. Nie, “An On-Line UPS System With Power Factor Correction and Electric Isolation Using BIFRED Converter,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL, pp. VOL. 55, NO. 2, FEB. 2008.
    [8] J. Lu, M. Savaghebi, S. Golestan, J. C. Vasquez, J. M. Guerrero and A. Marzabal, “Multimode Operation for On-Line Uninterruptible Power Supply System,” IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, pp. VOL. 7, NO. 2,, JUNE 2019.
    [9] B. Zhao, Q. Song, W. Liu and Y. Xiao, “Next-Generation Multi-Functional Modular Intelligent UPS System for Smart Grid,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, pp. VOL. 60, NO. 9, SEP. 2013.
    [10] N. S.Nise, 於 Control Systems Engineering, sixth edition, p. Chapter 5.
    [11] D. Habi´c, A. Pavasovi´c, and D. Vasiljevi´c, “The Design of a Microcontroller Temperature Compensated Crystal Oscillator ( CTCXO) and Automatic Compensation Line,” IEEE TRANSACTIONS ON ULTRASONICS, pp. VOL. 42, NO. 4,, JUL. 1995.
    [12] K. Tanaka, Y. Lee, E. Nomoto, T. Sugawara and H. Arimoto, “Automatic Impairment-Aware Optical Path Switching in Multicore Fiber Link Based on Multiring Structure,” JOURNAL OF LIGHTWAVE TECHNOLOGY, pp. VOL. 33, NO. 14, 15 JUL. 2015.
    [13] T. Instruments, TMS320C28x CPU and Instruction Set Reference Guide, Texas Instruments, 2001.
    [14] T. Instruments, TMS320F2803x Piccolo System Control and Interrupts Reference Guide, Texas Instruments, 2009.
    [15] Hennessy, D. A. Patterson and J. L., Computer oraganization and design fifth edition.
    [16] H. Youness, M. Moness and M. Khaled, "MPSoCs and Multicore Microcontrollers for Embedded PID Control: A Detailed Study," IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, pp. VOL. 10, NO. 4, NOV. 2014.
    [17] A. I. Pressman, K. Billings and T. Morey, Switching Power Supply Design Third Edition.
    [18] W. Cheng, J. Song, H. Li and Y. Guo, “Time-Varying Compensation for Peak Time-Varying Compensation for Peak,” IEEE TRANSACTIONS ON POWER ELECTRONICS, pp. VOL. 30, NO. 6, JUN. 2015.
    [19] M. Bodetto, A. El Aroudi, A. Cid-Pastor and L. Martinez Salamero, “High performance hysteresis modulation technique for high-order PFC circuits,” ELECTRONICS LETTERS, p. 113–114, 16th JAN. 2014.
    [20] C. Y. Chen, Study on Transferring State of Full Digital Grid-connected Bidirectional DC-AC Converter.
    [21] L. A. Chen, “Design and Implement of a Novel High Step-Up Multiple-Output Converter with Digital Control Chip applied to a Grid-Connected PV System,” JUN. 2011.
    [22] K. Sundareswaran, N. Rajasekar, and V. T. Sreedevi, “Performance Comparison of Capacitor-Run Induction Motors Supplied From AC Voltage Regulator and SPWM AC Chopper,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, pp. VOL. 53, NO. 3, JUN. 2006.
    [23] F. J. Wu, B. Sun and H.R. Peng, “Single-phase three-level SPWM scheme suitable for implementation with DSP,” ELECTRONICS LETTERS, p. Vol. 47 No. 17, 18th AUG. 2011.
    [24] C. S. Wu and J. F. Chen, “Study and Implementation of a Novel Self-Balancing Nine-Level Inverter with Couple Inductor,” JUL. 2019.
    [25] M. Uno and K. Sugiyama, “Switched Capacitor Converter Based Multiport Converter Integrating Bidirectional PWM and Series-Resonant Converters for Standalone Photovoltaic Systems,” IEEE TRANSACTIONS ON POWER ELECTRONICS, pp. VOL. 34, NO. 2, FEB. 2019.
    [26] B. Mangu, S. Akshatha, D. Suryanarayana and B. G. Fernandes, “Grid-Connected PV-Wind-Battery-Based Multi-Input Transformer-Coupled Bidirectional DC-DC Converter for Household Applications,” IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, pp. VOL. 4, NO. 3,, SEP. 2016.
    [27] Y. P. Hsieh, “Study and Implement of a High Efficiency and High Step-Up DC-DC conveter,” NOV. 1999.
    [28] Y. P. Hsieh, “Coupled-Inductor Technique for High Step-Up DC-DC Conveters,” JAN. 2013.
    [29] K. Nishijima, K. Abe, D. Ishida, T. Nakano, T. Nabeshima, T. Sato and K. Harada;, “A Novel Tapped-Inductor Buck Converter for Divided Power Distribution System,” IEEE Power Electronics Specialists Conference, 2006.
    [30] Instruments, Texas, TMS320x2802x, 2803x Piccolo Enhanced Pulse Width Modulator (ePWM) Module Reference Guide, Texas Instruments.
    [31] Y. L. Chen, “Dual Mode Digital Buck Converter Controller without Current Sensor,” JUL. 2017.

    下載圖示 校內:2024-09-01公開
    校外:2024-09-02公開
    QR CODE