| 研究生: |
林信宏 Lin, Hsin-Hung |
|---|---|
| 論文名稱: |
流體界面上廣義孤立波之理論研究 Theoretical Study of Generalized Interfacial Solitary Waves |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 孤立波 |
| 外文關鍵詞: | Solitary Waves |
| 相關次數: | 點閱:48 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在文獻中孤立波指的是傳播中波形不變之局部擾動;但在先前研究中也發現,當波動系統較為複雜或受到干擾時,小振幅之週期波可能伴隨著孤立波出現。因此時主要波形仍為孤立波之型式,所以在文獻中稱這樣的波動為廣義孤立波。本文利用漸近方法將雙層流體系統的二維勢流模型簡化成干擾Korteweg-de Vries(KdV)方程式,並在簡化模型問題之基礎上探討雙層流體系統中廣義孤立波之傳播特性。
在本文中我們同時利用漸近與數值方法來計算廣義孤立波之波形與波尾振幅。由漸近解與數值解結果之比較發現,當深長比較小( )時數值解與漸近解就越吻合。同時,當固定深長比為 且深度比 遠離臨界深度比 時,漸近解析解和數值解計算結果相當吻合。可是當靠近深度比臨界值時,不僅我們先前所推導出的干擾KdV模型問題失效,在數值解方面也仍有困難待解決。
Solitary waves are locally confined disturbances that propagate without distortion in the wave systems when nonlinear and dispersive effects balance each other. However, results from previous studies show that, under structural perturbations solitary waves may develop oscillatory tails of small amplitude. Such weakly radiating solitary waves usually are referred to as generalized solitary waves in the literature. In this thesis, we consider a two-layer ideal fluid system where generalized solitary waves may arise. However, in order that further analytical and numerical studies can be carried out more efficiently, here we employ standard asymptotic techniques to reduce the full model to a perturbed Korteweg-de Vries (KdV) model problem.
In the perturbed KdV equation so derived, we relate the effects of higher-order dispersion and quadratic and cubic nonlinearites to the density ratio and depth ration of the fluid system. Then, in the long-wave limit, generalized solitary wave solutions are calculated using the techniques of exponential asymptotics. Furthermore, exact numerical solutions for waves of arbitrary length scale are also obtained by a spectral method. Generally speaking, the asymptotic results agree well with the numerical results even when the length scale of the wave disturbances becomes quite small. However, when the depth ratio of the fluid system is close to a critical value, the quadratic term in the perturbed KdV equation becomes small, thus invalidating our asymptotic theory. Unfortunately, the numerical method also becomes quite inefficient in such limit, so the dynamics of generalized solitary waves in such limit still is not well studied.
[1] D. J. Korteweg and G. de Vries:Phil. Mag. 39 (1895) 422;see also C. S.Gardner and G. K. Morikawa:Rep. NYO 9802, Courant Inst., NewYork (1960), and A. Jeffery and T. Kakutani:SIAM Rev. 14(1972)582.
[2] J. K. Hunter and J.-M. Vanden-Broeck, “Solitary and Periodic Gravity-Capillary Waves of Finite Amplitude,” J. Fluid Mech. 134, 205(1983).
[3] J. K. Hunter and J. Scheurle, “Existence of Perturbed Solitary Wave Solution to a Model Equation for Water Waves,” Physica D 32, 253(1988).
[4] H. Segur, S. Tanveer, and H. Levin, Asymptotics Beyond All Orders Plenum, New York(1991).
[5] Y. Pomeau, A. Ramani, and B. Grammaticos, “Structural Stability of The Korteweg-de Vries Solitons under a Singular Perturbation,” Physica D 31, 127(1998).
[6] R. Grimshaw and N. Joshi, “Weakly Nonlocal Solitary Waves in Singularly Perturbed Korteweg-de Vries Equation,” SIAM J. Appl. Math. 55, 124(1995).
[7] J. P. Boyd, “Weakly Non-Local Solitons for Capillary-gravity Waves:Fifth-degree Korteweg-de Vries Equation,” Physica D 48, 129(1991).
[8] T. R. Akylas and T.-S, Yang, “On Short-scale Oscillatory Tails of Long wave Disturbances,” Stud. Appl. Math. 94, 1(1995).
[9] S. M. Sun, ”Existence of a Generalized Solitary Wave Solution for Water with Positive Bond Number Less Than 1/3,” J. Math. Anal. Appl. 156, 471(1991).
[10] J. T. Beale, “Exact Solitary Water Waves with Caoillary Ripples at Infinity,” Commun. Pure Appl. Math. 44, 211(1991).
[11] G. Iooss and K. Kirchgässner, “Water Waves for Small Surface Tension:An Approach via Normal Form,” Proc. R. Soc. Edinburgh, Sect A:Math. 122, 267(1992).
[12] S. M. Sun and M. C. Shen, “Expomentially Small Estimate for the Amplitude of Capillary Ripples of a Generalized Solitary Wave,” J. Math. Anal. Appl. 172, 533(1993).
[13] E. Lombardi, “Homoclinic Orbits to Small Periodic Orbits for a Class of Reversible System,” Proc. R. Soc. Edinburgh, Sect. A.:Math. 126, 1035(1996).
[14] E. Lombardi, “Orbits Homoclinic to Exponentially Small Periodic Orbits for a Class of Reversible System:Application to Water Waves,” Arch. Ration, Mech. Anal. 137, 227(1997).
[15] J.-M. Vanden-Broeck, “Elevation Solitary Waves with Surface Tension ,” Phys. Fluids A 3, 2659(1991).
[16] T. S. Yang and T. R. Akylas, “Weakly Nonlocal Gravity-capillary Solitary Waves,” Phys.Fluids 8, 1506(1996).
[17] T. R. Akylas and R. H. J, Grimshaw, “Solitary Internal Waves with Oscillatory Tails” J. Fluids Mech. 242, 279(1992).
[18] J.-M, Vanden-Broeck and R. E. L. Turner, “Long Periodic Internal Waves,” Phys. Fluids A 4, 1929(1992).
[19] A. S. Peters and J. J. Stoker, “Solitary Waves in Liquids Having Nonconstant Density,” Commun. Pure Appl. Math, 13, 115(1960).
[20] T. Kakutani and N. Yamasaki, “ Solitary Waves on a Two-layer Fluid,” J. Phys. Soc. Jpn. 45, 674(1978).
[21] S. M. Sun and M. C. Shen, “Exacttheory of Generalized Solitary Waves in a Two-layer Liquid in the Absence of Surface Tension,” J. Math.Anal. Appl. 180 245(1993).
[22] H. Michallet and F. Dias, “Numerical Study of Generalized Interfacial Solitary Waves,” Phys. Fluids 8, 674 (1978).
[23] H. Michallet, “Etude Théorique et Expérimentale des Ondes Solitaires Interfaciales.” Ph.D. thesis, Université Joseph Fourier, Grenoble,(1995).
[24] I. G. Currie, Fundamental Mechanics of Fluids, 2nd ed, p.p48~50
[25] S. Nakamura, Applied Numerical Methods In C, Prentice–Hall(1995).
[26] T. S. Yang, W. L. Kath, and S. K. Turitsyn,“The multipre-scale averaging and dynamics of disersion-managed optical solitions”Journal of Engineering Mathematics 36,163-184(1999).
[27] Segur, H. & Kruskal, M. D.”Nonexistence of Small-amplitude Breather Solution of Theory.” Phys. Rev. Lett. 58, 747-750(1987).
[28] Pomeau, Y., Ramani, A. & Grammaticos, B “Structural Stability of The Korteweg-de Vries Solitons under a Singular Perturbation.” Physica D 31, 127-143(1988).