| 研究生: |
曾濟彬 Tseng, Chi-Ping |
|---|---|
| 論文名稱: |
氮化鎵/氮化鋁鎵高電子遷移率電晶體及其感測元件之應用 Investigation of AlGaN/GaN HEMT and Its Sensor Electronic Applications |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 氮化鋁鎵/氮化鎵 、高電子遷移率電晶體 、氧化鋅奈米線 、光檢測器 、氣體檢測器 |
| 外文關鍵詞: | AlGaN/GaN, SiN, ZnO, HEMT, Photodetector, Gas Sensor |
| 相關次數: | 點閱:128 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文當中,我們利用成長在矽基板上的氮化鎵/氮化鋁鎵試片製作高電子遷移率電晶體,實驗的方向分為兩個主軸。不同的隔離層厚度對氮化鋁鎵/氮化鎵高電子遷移率電晶體的影響以及氮化鋁鎵/氮化鎵高電子遷移率電晶體在氣體及光感測元件上的應用。
首先第一部分是探討氮化鋁鎵/氮化鎵高電子遷移率電晶體不同的隔離層厚度的試片比較,將一樣的製程應用在相同磊晶層的試片上,使用低壓化學氣相沉積不同厚度的氮化矽隔離層,在直流電性的部分,有氮化矽隔離層的高電子遷移率電晶體可以在閘極漏電流有明顯的抑制,並有較小的汲極漏電流密度,在臨界電壓有3到3.5伏特的正向偏移和電流飽和時有更佳的I-V曲線。
實驗的第二部分是將高電子遷移率電晶體應用於光檢測器與氣體感測器,於閘極區利用水熱法成長氧化鋅奈米線並利用氮化鋁鎵/氮化鎵高電子遷移率電晶體其異質結構氮化鋁鎵與氮化鎵之間的晶格不匹配會產生壓電極化效應,藉產生的二維電子氣 (2DEG) 可用來做為感測用途,本實驗分為光感測及氣體感測兩部分作為研究,並分別利用不同頻譜的光對其照射,量測其對光的感測能力,得到最高4.74A/W的響應並有24.74倍的拒斥比,另一部分,量測對酒精氣體的反應,加熱元件到300度並給予1伏特的偏壓可以成功量測到500ppm的酒精氣體並有最高3.81%的響應度以及4.3秒的上升時間。
In this thesis, aluminum gallium nitride/gallium nitride high electron mobility transistor (AlGaN/GaN HEMT) covered with silicon nitride passivation on silicon substrate were fabricated, the experimental topic is divided into two main part. The effect of different silicon nitride passivation layer thickness on the AlGaN/GaN HEMT and the sensing application of in gas and UV detecting by Zinc oxide nanorod gated AlGaN/GaN based HEMT sensor.
In the first topic, devices with different thickness of silicon nitride passivation layer were fabricated by the same process. By using low pressure chemical vapor deposition (LPCVD) process, silicon nitride was grown on the AlGaN/GaN HEMT structure with two different thickness, 8nm and 16nm. In order to compare the different thickness of the passivation layer, the I-V characteristic were measured. Showing the device with thicker silicon nitride passivation has the better performance, not only depress the leakage current of the gate but also has positive threshold voltage shift and exhibits better I-V curves at the saturation states.
The second part demonstrate the sensing application of AlGaN/GaN HEMT, ZnO nanorod microstructure was synthesized by using simple hydrothermal method. The ZnO nanorods were used to fabricate a gas sensor to detect ethanol vapor. It is also capable for UV detecting as a photodetector. From the measurement results, AlGaN/GaN HEMT based sensor with ZnO nanorod has high, reversible and fast response to ethanol, and exhibited sensitive responsivity as photodetector demonstrating great potential application as a multiple function sensor.
[1] Lin, J. H., Huang, S. J., Su, Y. K., & Lai, C. H. (2015). Performance improvement of GaN-based HEMT grown on silicon (111) substrate by inserting low temperature AlN layer. Applied Surface Science, 354, 148-154.
[2] Huang, S. J., Chou, C. W., Su, Y. K., Lin, J. H., Yu, H. C., Chen, D. L., & Ruan, J. L. (2017). Achievement of normally-off AlGaN/GaN high-electron mobility transistor with p-NiO x capping layer by sputtering and post-annealing. Applied Surface Science, 401, 373-377.
[3] Lin, J. H., Huang, S. J., Lai, C. H., & Su, Y. K. (2015). Normally-off AlGaN/GaN high-electron-mobility transistor on Si (111) by recessed gate and fluorine plasma treatment. Japanese Journal of Applied Physics, 55(1S), 01AD05.
[4] Lee, Ching-Ting, and Ying-Shuo Chiu. "Photoelectrochemical passivated ZnO-based nanorod structured glucose biosensors using gate-recessed AlGaN/GaN ion-sensitive field-effect-transistors." Sensors and Actuators B: Chemical 210 (2015): 756-761.
[5] Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., ... & Stutzmann, M. (1999). Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures. Journal of applied physics, 85(6), 3222-3233.
[6] Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., ... & Dimitrov, R. (2000). Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. Journal of applied physics, 87(1), 334-344.
[7] Neuberger, R., Müller, G., Ambacher, O., & Stutzmann, M. (2001). High‐Electron‐Mobility AlGaN/GaN Transistors (HEMTs) for Fluid Monitoring Applications. physica status solidi (a), 185(1), 85-89.
[8] Schalwig, J., Müller, G., Ambacher, O., & Stutzmann, M. (2001). Group‐III‐Nitride Based Gas Sensing Devices. physica status solidi (a), 185(1), 39-45.
[9] Eickhoff, M., Neuberger, R., Steinhoff, G., Ambacher, O., Müller, G., & Stutzmann, M. (2001). Wetting Behaviour of GaN Surfaces with Ga‐or N‐Face Polarity. physica status solidi (b), 228(2), 519-522.
[10] Ishiguro, M., Ikeda, K., Mizuno, M., Iwaya, M., Takeuchi, T., Kamiyama, S., & Akasaki, I. (2013). Control of the Detection Wavelength in AlGaN/GaN-Based Hetero-Field-Effect-Transistor Photosensors. Japanese Journal of Applied Physics, 52(8S), 08JF02.
[11] Tipirneni, N., Koudymov, A., Adivarahan, V., Yang, J., Simin, G., & Khan, M. A. (2006). The 1.6-kv algan/gan hfets. IEEE Electron Device Letters, 27(9), 716-718.
[12] Palacios, T., Chakraborty, A., Heikman, S., Keller, S., DenBaars, S. P., & Mishra, U. K. (2006). AlGaN/GaN high electron mobility transistors with InGaN back-barriers. IEEE Electron Device Letters, 27(1), 13-15.
[13] Rajan, S., Xing, H., DenBaars, S., Mishra, U. K., & Jena, D. (2004). AlGaN/GaN polarization-doped field-effect transistor for microwave power applications. Applied physics letters, 84(9), 1591-1593.
[14] T. P. Chow, MRS Symposium No. 622 Materials Research Society, No. T1.1.1.Pittsburgh, 2000.
[15] Donald A.. Neamen. Semiconductor physics and devices: basic principles. McGraw-Hill Education, 2012.
[16] Lin, Z., Lu, W., Lee, J., Liu, D., Flynn, J. S., & Brandes, G. R. (2003). Barrier heights of Schottky contacts on strained AlGaN/GaN heterostructures: Determination and effect of metal work functions. Applied physics letters, 82(24), 4364-4366.
[17] Yun, Wang H H, Liu F F, et al. . Research progress of GaN HEMT device structure [J]. Chin. J. Lumin. , 2015, 36(10):1178¯1187.
[18] Guo, Z., Wang, L., Hao, Z., & Luo, Y. (2013). Modeling and experimental study on sensing response of an AlGaN/GaN HEMT-based hydrogen sensor. Sensors and Actuators B: Chemical, 176, 241-247.
[19] Rýger, I., Vanko, G., Kunzo, P., Lalinský, T., Vallo, M., Plecenik, A., ... & Plecenik, T. (2012). AlGaN/GaN HEMT based hydrogen sensors with gate absorption layers formed by high temperature oxidation. Procedia Engineering, 47, 518-521.
[20] Chen, C. C., Chen, H. I., Liu, I. P., Liu, H. Y., Chou, P. C., Liou, J. K., & Liu, W. C. (2015). Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment. Sensors and Actuators B: Chemical, 211, 303-309.
[21] So, H., Lim, J., & Senesky, D. G. (2016). Continuous V-grooved AlGaN/GaN surfaces for high-temperature ultraviolet photodetectors. IEEE Sensors Journal, 16(10), 3633-3639.
[22] Dzuba, J., Vanko, G., Držík, M., Rýger, I., Kutiš, V., Zehetner, J., & Lalinský, T. (2015). AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism. Applied Physics Letters, 107(12), 122102.
[23] Dogar, S., Khan, W., & Kim, S. D. (2016). Ultraviolet photoresponse of ZnO nanostructured AlGaN/GaN HEMTs. Materials Science in Semiconductor Processing, 44, 71-77.
[24] Zhou, H., Gui, P., Yu, Q., Mei, J., Wang, H., & Fang, G. (2015). Self-powered, visible-blind ultraviolet photodetector based on n-ZnO nanorods/i-MgO/p-GaN structure light-emitting diodes. Journal of Materials Chemistry C, 3(5), 990-994.
[25] Li, J. D., Cheng, J. J., Miao, B., Wei, X. W., Zhang, Z. Q., Li, H. W., & Wu, D. M. (2014). Research on biomolecule-gate AlGaN/GaN high-electron-mobility transistor biosensors.
[26] Sze, Simon Min. Semiconductor devices: physics and technology. John Wiley & Sons, 2008.
[27] Lin, J. H., Huang, S. J., Lai, C. H., & Su, Y. K. (2015). AlGaN/GaN high-electron-mobility transistor with distributed gate grown on stripe-patterned Si (111) substrate. Japanese Journal of Applied Physics, 55(1S), 01AD07.
[28] Stutzmann, M., Steinhoff, G., Eickhoff, M., Ambacher, O., Nebel, C. E., Schalwig, J., ... & Müller, G. (2002). GaN-based heterostructures for sensor applications. Diamond and related materials, 11(3), 886-891.
[29] Korotcenkov, G. (2007). Metal oxides for solid-state gas sensors: What determines our choice?. Materials Science and Engineering: B, 139(1), 1-23.
[30] Rout, C. S., Raju, A. R., Govindaraj, A., & Rao, C. N. R. (2006). Hydrogen sensors based on ZnO nanoparticles. Solid State Communications, 138(3), 136-138.
[31] Jiaqiang, X., Yuping, C., Daoyong, C., & Jianian, S. (2006). Hydrothermal synthesis and gas sensing characters of ZnO nanorods. Sensors and Actuators B: Chemical, 113(1), 526-531.
[32] Chen, Y. J., Zhu, C. L., & Xiao, G. (2008). Ethanol sensing characteristics of ambient temperature sonochemically synthesized ZnO nanotubes. Sensors and Actuators B: Chemical, 129(2), 639-642.
[33] Choopun, S., Hongsith, N., Mangkorntong, P., & Mangkorntong, N. (2007). Zinc oxide nanobelts by RF sputtering for ethanol sensor. Physica E: Low-dimensional Systems and Nanostructures, 39(1), 53-56.
[34] Liu, J., Guo, Z., Meng, F., Luo, T., Li, M., & Liu, J. (2009). Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS (en) 0.5 (en= ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection. Nanotechnology, 20(12), 125501.
[35] Arulkumaran, S., Egawa, T., Ishikawa, H., Jimbo, T., & Sano, Y. (2004). Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO 2, Si 3 N 4, and silicon oxynitride. Applied Physics Letters, 84(4), 613-615.
[36] Kim, D. H., Kumar, V., Chen, G., Dabiran, A. M., Wowchak, A. M., Osinsky, A., & Adesida, I. (2007). ALD al2o3 passivated mbe-grown algan/gan hemts on 6h-sic. Electronics Letters, 43(2), 127-128.
[37] Huang, S., Yang, S., Roberts, J., & Chen, K. J. (2011). Threshold voltage instability in Al2O3/GaN/AlGaN/GaN metal–insulator–semiconductor high-electron mobility transistors. Japanese Journal of Applied Physics, 50(11R), 110202.
[38] Arulkumaran, Subramaniam, Takashi Egawa, and Hiroyasu Ishikawa. "Studies of Electron Beam Evaporated SiO2/AlGaN/GaN Metal–Oxide–Semiconductor High-Electron-Mobility Transistors." Japanese journal of applied physics 44.6L (2005): L812.
[39] Streetman, Ben G. and Sanjay Banerjee, Noise in Solid State Devices and Circuits. New Jersey: Prentice Hall, 1986.
[40] D. C. Reynolds, D. C. Look, B. Jogai, C.W. Litton, T. C. Collins, W. Harsch, and G. Cantwell, “Neutral-donor–bound-exciton complexes in ZnO crystals,” Phys. Rev. B, vol. 57, pp. 12151–12155, 1998.
[41] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity,” Appl. Phys. Lett., vol. 73, pp. 2146–2148, 1998.
[42] Donald A. Neamen, Semiconductor Physics and Devices: Basic Principles, 3/e. New York: McGraw-Hill, 2003.
[43] J. L. Vossen and W. Kern, Thin Flim Processes. New York: Academic Press, 1978.
[44] C. Y. Chang and S. M. Sze, ULSI Technology. New York: McGraw-Hill, 1996.
[45] B.D. Cullity, Elements of X-ray Diffraction, 2/e. Boston: Addison Wesley, 1978.
[46] Tirado, Jos Mara, Jos Luis Sanchez-Rojas, and Jos Ignacio Izpura. "Trapping effects in the transient response of AlGaN/GaN HEMT devices." IEEE Transactions on Electron Devices 54.3 (2007): 410-417.
[47] Binari, S. C., Ikossi, K., Roussos, J. A., Kruppa, W., Park, D., Dietrich, H. B., ... & Henry, R. L. (2001). Trapping effects and microwave power performance in AlGaN/GaN HEMTs. IEEE Transactions on Electron Devices, 48(3), 465-471.
[48] Wang, X. D., Hu, W. D., Chen, X. S., & Lu, W. (2012). The study of self-heating and hot-electron effects for AlGaN/GaN double-channel HEMTs. IEEE Transactions on Electron Devices, 59(5), 1393-1401.
[49] Meneghini, M., Ronchi, N., Stocco, A., Meneghesso, G., Mishra, U. K., Pei, Y., & Zanoni, E. (2011). Investigation of trapping and hot-electron effects in GaN HEMTs by means of a combined electrooptical method. IEEE Transactions on Electron Devices, 58(9), 2996-3003.
[50] Ohi, S., Kakegami, T., Tokuda, H., & Kuzuhara, M. (2014, June). Effect of passivation films on DC characteristics of AlGaN/GaN HEMT. In Future of Electron Devices, Kansai (IMFEDK), 2014 IEEE International Meeting for (pp. 1-2). IEEE.
[51] Shen, L., Zhang, D., Cheng, X., Zheng, L., Xu, D., Wang, Q., ... & Yu, Y. (2017). Performance Improvement and Current Collapse Suppression of Al 2 O 3/AlGaN/GaN HEMTs Achieved by Fluorinated Graphene Passivation. IEEE Electron Device Letters, 38(5), 596-599.
[52] Chiou, Ya-Lan, and Ching-Ting Lee. "AlGaN/GaN MOS-HEMTs with ZnO gate insulator and chlorine surface treatment." TENCON 2010-2010 IEEE Region 10 Conference. IEEE, 2010.
[53] Lee, Ching-Ting, Ya-Lan Chiou, and Chi-Sen Lee. "AlGaN/GaN MOS-HEMTs with gate ZnO dielectric layer." IEEE Electron Device Letters 31.11 (2010): 1220-1223.
[54] Guo, L., Ji, Y. L., Xu, H., Simon, P., & Wu, Z. (2002). Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure. Journal of the American Chemical Society, 124(50), 14864-14865.
[55] Anderson Janotti and Chris G Van de Walle, “Fundamentals of zinc oxide as a semiconductor.”, Rep. Prog. Phys., 72 (2009) 126501 (29pp).
[56] Lo, C. F., Xi, Y., Liu, L., Pearton, S. J., Doré, S., Hsu, C. H., ... & Ren, F. (2013). Effect of temperature on CO sensing response in air ambient by using ZnO nanorod-gated AlGaN/GaN high electron mobility transistors. Sensors and Actuators B: Chemical, 176, 708-712.
[57] Lo, C. F., Liu, L., Chu, B. H., Ren, F., Pearton, S. J., Doré, S., ... & Chow, P. P. (2012). Carbon monoxide detection sensitivity of ZnO nanorod-gated AlGaN/GaN high electron mobility transistors in different temperature environments. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 30(1), 010606.
[58] Lori E. Greene, Matt Law, Dawud H. Tan, Max Montano, Josh Goldberger, Gabor Somorjai, and Peidong Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds.”, Nano Letters, 5 (2005) 1231–1236.
[59] C.M. Yang, M.H. Hon, I.C. Leu, “Patterned Zn-seeds and selective growth of ZnO nanowire arrays on transparent conductive substrate and their field emission characteristics.”, Ceramics International, 38 (2012) 4277–4283.
[60] H. T. Hsueh, T. J. Hsueh, S. J. Chang, Senior Member, IEEE, F. Y. Hung, C. L. Hsu, B. T. Dai, K. T. Lam, and K. H. Wen, “A Flexible ZnO Nanowire-Based Humidity Sensor.”, IEEE TRANSACTIONS ON NANOTECHNOLOGY, 11 (2012) 520–525.
Zhengrong R.Tian, James A.Voigt, Jun Liu, Bonnie Mckenzie, Matthew J. McDermott, Mark A. Rodriguez, HiromiI Konishi and Huifang Xu, “Complex and oriented ZnO nanostructures.”, Nature Materials, 2 (2003) 821–826.