| 研究生: |
許閔翔 Hsu, Min-Shiang |
|---|---|
| 論文名稱: |
以射頻磁控濺鍍法製作LaGdO3薄膜及其於透明微電子電路之應用 Fabrications of LaGdO3 Thin Film by Using RF Sputtering for Transparent Microelectronic Applications |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 射頻磁控濺鍍法 、介電薄膜 、透明電子電路 、電阻式記憶體 |
| 外文關鍵詞: | Sputter, dielectric material, transparent thin film, RRAM |
| 相關次數: | 點閱:115 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用射頻磁控濺鍍法(RF sputtering)在ITO玻璃基板上製作LaGdO3薄膜,並利用電子束蒸鍍法製作Al金屬作為上電極,使元件結構成為MIM(Metal - Insulator - Metal)電容。整個實驗分為兩主軸方向,分別是介電材料之應用以及電阻式記憶體之研究。在介電薄膜之研究方面分為三大部分,第一個部分為探討LaGdO3介電薄膜在不同基板溫度下製作之物性與電性分析。根據實驗結果發現,LaGdO3薄膜在基板溫度400℃時有最佳的膜厚均勻性,以及較佳的介電特性,接著我們比較電極退火與否對於電特性之影響,由TEM微結構分析中發現,在電極退火200℃時,在電極與介電薄膜間出現明顯的氧化鋁層,而此氧化鋁層的出現會使得元件整體電容值下降,因此,我們選擇了電極未退火處理來做為後續研究之參數。
在第二部分的實驗中,我們探討了不同退火溫度對於LaGdO3薄膜之物性及電性影響。根據實驗結果,在不同的退火溫度下,LaGdO3薄膜皆呈現結晶態,而在退火500℃時得到較平滑之表面(Rrms:3.87nm)、在可見光波段之光學穿透率約為80%、在頻率1 MHz時的電容密度約為0.42 μF/cm2 (k~23.9)、介電損耗則是0.85、漏電流密度約在10-8 A/cm2(外加偏壓15 V時)。在漏電流機制分析中發現,在中段電場時符合普爾-法蘭克發射機制,較高電場時則符合蕭特基發射機制,不同退火溫度的光學能隙皆約為5.85 eV。此外,我們亦建立了等效電路模型來描述我們所製作的MIM電容器。
在第三個部份的實驗中,我們探討了不同退火氣氛對於LaGdO3薄膜之物性及電特性影響。於實驗結果中發現,在氮氫氣氛下(95% N2+5% H2)退火,有較為平滑表面(Rrms:3.83),在可見光波段穿透率約為80%,除此之外,擁有較佳的介電特性,在頻率1 MHz下,電容密度為0.51 μF/cm2、介電損耗值為0.24,亦可以利用Goswami-Goswami等效電路模型來描述。在漏電流分析的部分,因為較多氧空缺之影響,於外加偏壓10 V時約為10-4 A/cm2。
在另一個主軸,電阻式記憶體的研究部分,我們以Al/LaGdO3/ITO/glass此結構,製作電阻式記憶體,發現在限制電流0.01 A時,具有單極性之電阻轉換特性,有四個數量級以上的開關比(on/off ratio),在漏電流機制分析方面,此單極性轉換之電阻式記憶體在低阻態時是歐姆傳導機制、高阻態則是空間電荷傳導機制。
In this research we choose the rare earth ternary oxide as the gate dielectric material for the transparent microelectronic application. We deposit the LaGdO3 thin film on the ITO/glass substrate by RF sputtering and select the Al metal as the top electrode. The first part of this research is the dielectric properties about Al/LGO/ITO/glass structure, and the second part is the resistive switching property. According to physical and electrical analysis, the thin film with substrate temperature 400℃ and electrode unanneled exists the better electrical characteristics and uniform morphology. In the effect of annealing temperature analysis, we found that 500℃ is the better annealing temperature with smooth morphology、higher permittivity (K~23.9@1MHz)、less dissipation factor (0.85@1MHz)、lower leakage current density(10-8 A/cm2 @15 V)and 80% transmittance in the visible spectral region. There are some trade-off problems in the different annealing atmosphere. For instance, the sample annealed in N2-H2 atmosphere shows the higher dielectric properties than samples annealed in air or pure oxygen but existing worst leakage current density which is attributed to more oxygen vacancy in the film. On the other hand, the on/off ratio of unipolar RRAM can reach above 4 orders that’s enough for memory application. In the end, we consider that LaGdO3 thin film applies on ITO/glass transparent substrate will be the potential material for the transparent electronic circuit.
[1] Displaybank, "Transparent Display Technology &Market Prospect", Displaybank special report, vol. iHS,Technical report, 2012.
[2] Y. Kuo, "Thin Film Transistor Technology--Past Present and Future", Electrochemical Society Interface, vol. 22,p.p. 55-61, 2013.
[3] E. Fortunato, P. Barquinha, R. Martins, "Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances", Adv. Mater., vol. 24,p.p. 2945-2986, 2012.
[4] R.A. Street, "Thin‐Film Transistors", Adv. Mater., vol. 21,p.p. 2007-2022, 2009.
[5] S.H.K. Park, C.S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.I. Lee, K. Lee, M.S. Oh, S. Im, "Transparent and Photo‐stable ZnO Thin‐film Transistors to Drive an Active Matrix Organic‐Light‐Emitting‐Diode Display Panel", Adv. Mater., vol. 21,p.p. 678-682, 2009.
[6] Y.S. Chun, S. Chang, S.Y. Lee, "Effects of gate insulators on the performance of a-IGZO TFT fabricated at room-temperature", Microelectron. Eng., vol. 88,p.p. 1590-1593, 2011.
[7] C.Y. Tsay, C.H. Cheng, Y.W. Wang, "Properties of transparent yttrium oxide dielectric films prepared by sol-gel process", Ceram. Int., vol. 38,p.p. 1677-1682, 2012.
[8] G.D. Wilk, R.M. Wallace, J.M. Anthony, "High-kappa gate dielectrics: Current status and materials properties considerations", J. Appl. Phys., vol. 89,p.p. 5243-5275, 2001.
[9] T. Prodromakis, C. Papavassiliou, "Engineering the Maxwell-Wagner polarization effect", Appl. Surf. Sci., vol. 255,p.p. 6989-6994, 2009.
[10] A. Dakhel, "Characterisation of Nd2O3 thick gate dielectric for silicon", PHYSICA STATUS SOLIDI A APPLIED RESEARCH, vol. 201,p.p. 745-755, 2004.
[11] H. Hu, C.X. Zhu, Y.F. Lu, Y.H. Wu, T. Liew, M.F. Li, B.J. Cho, W.K. Choi, N. Yakovlev, "Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications", J. Appl. Phys., vol. 94,p.p. 551-557, 2003.
[12] S. Ohmi, M. Takeda, H. Ishiwara, H. Iwai, "Electrical characteristics for Lu2O3 thin films fabricated by E-beam deposition method", J. Electrochem. Soc., vol. 151,p.p. G279-G283, 2004.
[13] J. Robertson, K. Xiong, "Electronic structure and band offsets of lanthanide oxides, Rare Earth Oxide Thin Films:Growth , Characterization , and Applications", Springer-Verlag Berlin, Berlin, pp. 313-329, 2007.
[14] S. Choi, B.Y. Park, S. Jeong, J.Y. Lee, B.H. Ryu, H.K. Jung, "Low voltage operated, sol-gel derived oxide thin film transistor based on high-k Gd2O3 gate dielectric", Mater. Chem. Phys., vol. 138,p.p. 1-4, 2013.
[15] V. Mikhelashvili, G. Eisenstein, F. Edelman, R. Brener, N. Zakharov, P. Werner, "Structural and electrical properties of electron beam gun evaporated Er2O3 insulator thin films", J. Appl. Phys., vol. 95,p.p. 613-620, 2004.
[16] T.M. Pan, F.J. Tsai, C.I. Hsieh, T.W. Wu, "Structural properties and electrical characteristics of praseodymium oxide gate dielectrics", Electrochem. Solid State Lett., vol. 10,p.p. G21-G24, 2007.
[17] J.H. Jun, C.H. Wang, D.J. Won, D.J. Choi, "Structural and electrical properties of a La2O3 thin film as a gate dielectric", J. Korean Phys. Soc., vol. 41,p.p. 998-1002, 2002.
[18] S.P. Pavunny, J.F. Scott, R.S. Katiyar, "Lanthanum gadolinium oxide: A new electronic device material for CMOS logic and memory devices", Materials, vol. 7,p.p. 2669-2696, 2014.
[19] H. Shimizu, S. Konagai, M. Ikeda, T. Nishide, "Characterization of Sol-Gel Derived and Crystallized ZrO2 Thin Films", Jpn. J. Appl. Phys., vol. 48,p.p. 6, 2009.
[20] M. Esro, R. Mazzocco, G. Vourlias, O. Kolosov, A. Krier, W.I. Milne, G. Adamopoulos, "Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors", Appl. Phys. Lett., vol. 106,p.p. 5, 2015.
[21] M.J. Alam, D.C. Cameron, "Preparation and characterization of TiO2 thin films by sol-gel method", J. Sol-Gel Sci. Technol., vol. 25,p.p. 137-145, 2002.
[22] E. Perez, T. Blanquart, K. Kukli, M. Ritala, "Influence of growth and annealing temperatures on the electrical properties of Nb2O5-based MIM capacitors", Semiconductor Science and Technology, vol. 28,p.p. 055005, 2013.
[23] H. Yurtseven, A. Kiraci, "Temperature dependence of the polarization and the dielectric constant near the paraelectric-ferroelectric transitions in BaTiO3", J. Mol. Model., vol. 19,p.p. 3925-3930, 2013.
[24] R. Raihan, K. Reifsnider, D. Cacuci, Q.L. Liu, "Dielectric signatures and interpretive analysis for changes of state in composite materials", ZAMM-Z. Angew. Math. Mech., vol. 95,p.p. 1037-1045, 2015.
[25] J. Singh, D.E. Wolfe, "Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD)", J. Mater. Sci., vol. 40,p.p. 1-26, 2005.
[26] J.A. Venables, G.D.T. Spiller, M. Hanbucken, "NUCLEATION AND GROWTH OF THIN-FILMS", Rep. Prog. Phys., vol. 47,p.p. 399-459, 1984.
[27] J.A. Thornton, "INFLUENCE OF APPARATUS GEOMETRY AND DEPOSITION CONDITIONS ON STRUCTURE AND TOPOGRAPHY OF THICK SPUTTERED COATINGS", Journal of Vacuum Science & Technology, vol. 11,p.p. 666-670, 1974.
[28] J.A. Thornton, "HIGH-RATE THICK-FILM GROWTH", Annu. Rev. Mater. Sci., vol. 7,p.p. 239-260, 1977.
[29] Y.D. Ho, K.R. Chen, C.L. Huang, "Sol-Gel-Derived Amorphous-MgNb2O6 Thin Films for Transparent Microelectronics", J. Am. Ceram. Soc., vol. 96,p.p. 3375-3378, 2013.
[30] H. Hosono, "Recent progress in transparent oxide semiconductors: Materials and device application", Thin Solid Films, vol. 515,p.p. 6000-6014, 2007.
[31] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, "P-type electrical conduction in transparent thin films of CuAlO2", Nature, vol. 389,p.p. 939-942, 1997.
[32] R.L. Hoffman, B.J. Norris, J.F. Wager, "ZnO-based transparent thin-film transistors", Appl. Phys. Lett., vol. 82,p.p. 733-735, 2003.
[33] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature, vol. 432,p.p. 488-492, 2004.
[34] F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, "Recent progress in resistive random access memories:Materials, switching mechanisms, and performance", Mater. Sci. Eng. R-Rep., vol. 83,p.p. 1-59, 2014.
[35] C. Chen, F. Pan, Z.S. Wang, J. Yang, F. Zeng, "Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure", J. Appl. Phys., vol. 111,p.p. 6, 2012.
[36] J.J. Huang, G.L. Lin, C.W. Kuo, W.C. Chang, T.H. Hou, "Room-temperature TiOx oxide diode for 1D1R resistance-switching memory", Semiconductor Device Research Symposium, 2009. ISDRS '09. International, vol. p.p. 1-2, 2009.
[37] R. Waser, M. Aono, "Nanoionics-based resistive switching memories", Nat. Mater., vol. 6,p.p. 833-840, 2007.
[38] T. Zhang, X. Ou, W.F. Zhang, J. Yin, Y.D. Xia, Z.G. Liu, "High-k-rare-earth-oxide Eu2O3 films for transparent resistive random access memory (RRAM) devices", J. Phys. D-Appl. Phys., vol. 47,p.p. 6, 2014.
[39] M. Lanza, "A Review on Resistive Switching in High-k Dielectrics:A Nanoscale Point of View Using Conductive Atomic Force Microscope", Materials, vol. 7,p.p. 2155-2182, 2014.
[40] F.C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films", Adv. Mater. Sci. Eng., vol. p.p. 18, 2014.
[41] S.M. Yu, X.M. Guan, H.S.P. Wong, "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model", Appl. Phys. Lett., vol. 99,p.p. 3, 2011.
[42] F.C. Chiu, W.C. Shih, J.J. Feng, "Conduction mechanism of resistive switching films in MgO memory devices", J. Appl. Phys., vol. 111,p.p. 5, 2012.
[43] C.D. Child, "Discharge from hot CaO", Phys. Rev., vol. 32,p.p. 0492-0511, 1911.
[44] W.-Y. Chang, J.-H. Liao, Y.-S. Lo, T.-B. Wu, "Resistive switching characteristics in Pr0.7Ca0.3MnO3 thin films on LaNiO3-electrodized Si substrate", Appl. Phys. Lett., vol. 94,p.p., 2009.
[45] 李雅明,"固態電子學",全華科技圖書有限公司,1995.
[46] H. Ohta, A. Nagashima, M. Ito, M. Hori, T. Goto, "Formation of silicon nitride gate dielectric films at 300 degrees C employing radical chemical vapor deposition", J. Vac. Sci. Technol. B, vol. 18,p.p. 2486-2490, 2000.
[47] J.M.J. Lopes, E.D. Ozben, M. Roeckerath, U. Littmark, R. Luptak, S. Lenk, M. Luysberg, A. Besmehn, U. Breuer, J. Schubert, S. Mantl, "Amorphous ternary rare-earth gate oxides for future integration in MOSFETs", Microelectron. Eng., vol. 86,p.p. 1646-1649, 2009.
[48] L.F. Edge, D.G. Schlom, S. Rivillon, Y.J. Chabal, M.P. Agustin, S. Stemmer, T. Lee, M.J. Kim, H.S. Craft, J.P. Maria, M.E. Hawley, B. Hollander, J. Schubert, K. Eisenbeiser, "Thermal stability of amorphous LaScO3 films on silicon", Appl. Phys. Lett., vol. 89,p.p. 3, 2006.
[49] S.P. Pavunny, A. Kumar, P. Misra, J.F. Scott, R.S. Katiyar, "Properties of the new electronic device material LaGdO3", Physica Status Solidi B-Basic Solid State Physics, vol. 251,p.p. 131-139, 2014.
[50] S.P. Pavunny, R. Thomas, A. Kumar, E. Fachini, R.S. Katiyar, "Optical properties of amorphous high-k LaGdO3 films and its band alignment with Si", J. Appl. Phys., vol. 111,p.p. 9, 2012.
[51] Y. Zhao, K. Kita, K. Kyuno, A. Toriumi, "Dielectric and electrical properties of amorphous La1-xTaxOy films as higher-k gate insulators", J. Appl. Phys., vol. 105,p.p. 5, 2009.
[52] 汪建民,"材料分析",中國材料科學學會,1998.
[53] S.-W. Nam, J.-H. Yoo, S. Nam, D.-H. Ko, J.-H. Ku, C.-W. Yang, "Physical and electrical degradation of ZrO2 thin films with aluminum electrodes", Materials Science and Engineering:B, vol. 102,p.p. 108-112, 2003.
[54] J. George, V.U. Nayar, E. Joy, M. Radhakrishnan, "The effect of the annealing of electrode films on the electrical resistivity of thin aluminium films", Thin Solid Films, vol. 47,p.p. 121-126, 1977.
[55] X.F. Song, R.L. Fu, H. He, "Frequency effects on the dielectric properties of AlN film deposited by radio frequency reactive magnetron sputtering", Microelectron. Eng., vol. 86,p.p. 2217-2221, 2009.
[56] A. Paskaleva, M. Lemberger, A.J. Bauer, W. Weinreich, J. Heitmann, E. Erben, U. Schroder, L.Oberbeck, "Influence of the amorphous/crystalline phase of Zr1-xAlxO2 high-k layers on the capacitance performance of metal insulator metal stacks", J. Appl. Phys., vol. 106,p.p. 6, 2009.
[57] L. Goux, H. Vander Meeren, D.J. Wouters, "Metallorganic chemical vapor deposition of Sr-Ta-O and Bi-Ta-O films for backend integration of high-k capacitors", J. Electrochem. Soc., vol. 153,p.p. F132-F136, 2006.
[58] H.T. Lue, C.Y. Liu, T.Y. Tseng, "An improved two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric", IEEE Electron Device Lett., vol. 23,p.p. 553-555, 2002.
[59] A. Goswami, A.P. Goswami, "Dielectric and optical properties of ZnS films", Thin Solid Films, vol. 16,p.p. 175-185, 1973.
[60] F. Zhang, G. Liu, A. Liu, B. Shin, F. Shan, "Solution-processed hafnium oxide dielectric thin films for thin-film transistors applications", Ceram. Int., vol. 41,p.p. 13218-13223, 2015.
[61] M.S. Tsai, S.C. Sun, T.Y. Tseng, "Effect of bottom electrode materials on the electrical and reliability characteristics of (Ba, Sr)TiO3 capacitors", IEEE Trans. Electron Devices, vol. 46,p.p. 1829-1838, 1999.
[62] F.J. Geng, C.H. Yang, P.P. Lv, C. Wei, J. Qian, C. Feng, Q. Yao, X.M. Jiang, P. Song, "Microstructure, leakage current and dielectric tunability of Na0.5Bi0.5(Ti0.99Zn0.01)O3 thin films:An annealing atmosphere-dependent study", Ceram. Int., vol. 42,p.p. 8744-8749, 2016.
[63] P. Misra, S.P. Pavunny, R.S. Katiyar, "On the Resistive Switching and Current Conduction Mechanisms of Amorphous LaGdO3 Films Grown by Pulsed Laser Deposition", ECS Transactions, vol. 53,p.p. 229-235.
[64] J. Lee, D.G. Lim, W. Song, J. Yi, "Influence of annealing temperature and atmosphere on the properties of ITO films deposited using a powdery target", J. Korean Phys. Soc., vol. 51,p.p. 1143-1146, 2007.
[65] J.S. An, S.C. Kim, S.H. Hahn, S.K. Ko, E.J. Kim, "Influence of annealing on the optical and the electrical properties of ITO thin films prepared by using a sol-gel spin method", J. Korean Phys. Soc., vol. 45,p.p. 1629-1634, 2004.
[66] J. Liang, P. Li, D. Wang, X. Fang, J. Ding, J. Wu, C. Tang, "Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition", Materials, vol. 9,p.p. 61, 2016.
校內:2021-08-04公開