簡易檢索 / 詳目顯示

研究生: 郭嘉振
Guo, Jia-Chen
論文名稱: 鳍形奈米線之氮化鋁鎵/氮化鎵金氧半高速電子遷移率電晶體之研究
Investigation of Fin-Nano-Array AlGaN/GaN MOS-HEMTs
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 77
中文關鍵詞: 氮化鎵/氮化鋁鎵光電化學法電子束微影系統鰭形結構
外文關鍵詞: AlGaN/GaN, Photoelectrochemical wet etching and oxidation, electron beam lithography system, fin structure
相關次數: 點閱:102下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文選用氮化鋁鎵/氮化鎵作為實驗基礎,其在異質接面處具有優選c-自發極化特性,使電子聚集於異質結構界面處形成二維電子氣(two dimensional electron gas,2DEG)通道,此通道具有高電子遷移率以及高電子飄移速度等特性,且氮化鎵本身為寬能隙材料,使氮化鋁鎵/氮化鎵能工作於高崩潰電場、高溫及高頻環境。利用上述提及的材料特性,完成平面式結構與具有不同通道寬度的鰭形結構氮化鋁鎵/氮化鎵之金氧半高速電子遷移率電晶體(MOS-HEMTs)。
    在鰭形結構的部份,本論文使用電子束微影系統搭配光電化學法蝕刻出鰭形結構,利用光電化學蝕刻法蝕刻氮化鋁鎵薄膜至二維電子氣通道,可以有效改善乾式蝕刻轟擊氮化鋁鎵表面所造成的缺陷,再以光電化學氧化法生長高品質氧化層作為閘極絕緣層並鈍化氮化鋁鎵表面。
    在量測數據的部份,鰭形結構相較於平面式結構多出兩側與通道的接觸面積,使閘極控制通道的能力提升,促使臨限電壓(threshold voltage, VTH)正偏移、提升最大轉移電導(gm(max))、減少次臨界擺幅(subthreshold swing, S.S.)、減少閘極漏電流及改善高頻與低頻雜訊特性,且隨著鰭形結構的通道寬度縮小,電場侷限效果更加強烈,能更有效控制二維電子氣通道的載子濃度,進一步提升空乏型電晶體元件的工作特性。

    In this research, the AlGaN/GaN heterostructure was used to fabricate planar structure and fin structure metal-oxide-semiconductor high-electron-mobility transistors with different channel width. To fabricate planar structure and fin structure, we used electron beam li-thography system and photoelectrochemical method. The electron beam lithography sys-tem could fabricate nanoscale fin pattern and precisely defined the fin pattern at the mid-dle of source electrode and drain electrode. At the same time, the photoelectrochemical wet etching method can prevent AlGaN surface from destroying by the plasma, and the photoelectrochemical wet oxidation method could directly grow high quality oxide on the AlGaN layer as gate dielectric film. Combining the advantages mentioned above, we suc-cessfully fabricated the fin structure with different channel width met-al-oxide-semiconductor high-electron-mobility transistors. To verify the advantage of fin structure, we analyzed the performances of fin structure transistors. Finally, we found fin structure could increase contact area between side walls of gate which would improve the performance of transistors.

    摘要 I Abstract III 致謝 XI 目錄 XIII 表目錄 XVII 圖目錄 XVIII 第一章 簡介 1 1.1 氮化鋁鎵/氮化鎵高速電子遷移率電晶體 1 1.2 研究動機 2 1.3 論文架構 3 參考文獻 7 第二章 原理與文獻回顧 10 2.1 氮化鋁鎵/氮化鎵異質結構 10 2.1.1 氮化鋁鎵/氮化鎵異質結構之成長 10 2.1.2 二維電子氣之特性 11 2.2 氮化鋁鎵蝕刻原理 11 2.2.1 光電化學(Photoelectrochemical, PEC)濕式蝕刻法 11 2.3 鰭形結構 13 2.3.1 鰭形結構原理與應用 13 2.4 高頻量測S參數 14 2.5 崩潰電壓 16 2.6 低頻雜訊 17 參考文獻 24 第三章 元件製程及量測儀器 29 3.1 試片結構 29 3.2 元件製作流程 29 3.2.1 高台隔離製作 29 3.2.2 硫化表面處理 32 3.2.3 歐姆接觸電極 32 3.2.4 鳍形多通道製作 33 3.2.5 閘極氧化層製作 35 3.2.6 閘極電極製作 36 3.3 製程及量測儀器 36 3.3.1 電子束微影系統 36 3.3.2 電子束蒸鍍系統 37 3.3.3 穿透式電子顯微鏡 37 3.3.4 DC電流-電壓量測系統 38 3.3.5 高頻量測系統 38 參考文獻 46 第四章 實驗結果與討論 48 4.1 平面式之高電子遷移率場效電晶體 48 4.1.1 平面式結構之直流特性量測 48 4.1.2 平面式結構之閘極漏電流及崩潰電壓量測 49 4.1.3 平面式結構之高頻特性量測 50 4.1.4 平面式結構之低頻雜訊量測 50 4.2 鰭形結構之高電子遷移率場效電晶體 51 4.2.1 鰭形(102 nm)結構之直流特性量測 51 4.2.2 鰭形(102 nm)結構之閘極漏電流及崩潰電壓量測 52 4.2.3 鰭形(102 nm)結構之高頻特性量測 53 4.2.4 鰭形(102 nm)結構之低頻雜訊量測 53 4.2.5 鰭形(72 nm)結構之直流特性量測 53 4.2.6 鰭形(72 nm)結構之閘極漏電流及崩潰電壓量測 54 4.2.7 鰭形(72 nm)結構之高頻特性量測 54 4.2.8 鰭形(72 nm)結構之低頻雜訊量測 55 4.3 平面式、鰭形(102 nm)與鰭形(72 nm)結構之高頻參數 55 參考文獻 72 第五章 結論 76

    第一章
    [1]T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Elec-tron Devices., vol. 41, pp. 1481-1483, 1994.
    [2]張家華, “異質結構AlGaN/GaN金屬接面特性之研究,”國防大學中正理工學院電子工程研究所碩士論文, 2001.
    [3]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of Al-GaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Elec-tron Devices, vol.48, pp. 450-457, 2001.
    [4]L. F. Eastman, V. Tilak, J. Smart, B. M. Green, E. M. Chumbes, R. Dimitrov, H. Kim, O. S. Ambacher, N. Weimann, T. Prunty, M. Mur-phy, W. J. Schaff and J. R. Shealy, “Undoped AlGaN/GaN HEMTs for microwave power application,” IEEE Trans. Electron Devices., vol. 48, pp. 479-485, 2001.
    [5]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polari-zation-induced charge and electron mobility in AlGaN/GaN hetero-structures grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys., vol. 86, pp. 4520-4526, 1999.
    [6]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoe-lectric polarization in undoped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, pp. 334-344, 2000.
    [7]H. Morkoc, A. D. Carlo and R. Cingolani, “GaN-based modulation doped FETs and UV detectors,” Solid-State Electron, vol. 46, pp. 157-202, 2002.
    [8]R. Dimitrov, M. Murphy, J. Smart, W. Schaff, J. R. Shealy, and L. F. Eastman, “Two-dimensional electron gases in Ga-face and N-face Al-GaN/GaN heterostructures grown by plasma-induced molecular beam epitaxy and Metalorganic chemical vapor deposition on sapphire,” J. Appl. Phys., vol. 87, pp. 3375-3380, 2000.
    [9]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, pp. 3222-3233, 1999.
    [10]L. Z. Hao, J. Zhu, and Y. R. Li “Integration between LiNbO3 ferroe-lectric film and AlGaN/GaN system,” JCR Abbrev: Mater. Sci. Forum, vol. 687, pp. 303-308, 2011.
    [11]S. Liu, Y. Cai, G. Gu, J. Wang, C. Zeng, W. Shi, Z. Feng, H. Qin, Z. Cheng, K. J. Chen and B. Zhang “Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs,” IEEE Electron De-vice Lett., vol. 33, pp. 354-356, 2012.
    [12]K. Ohi, J. T. Asubar, K. Nishiguchi and T. Hashizume, “Current sta-bility in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. Elec-tron Devices, vol. 60, pp. 2997-3004, 2013.
    [13]Y. W. Jo, D. H. Son, C. H. Won, K. S. Im, J. H. Kim, J. H. Seo, I. M. Kang and J. H. Lee, “AlGaN/GaN FinFET with extremely broad transconductance by side-wall wet etch,” IEEE Electron Device Lett., vol.36, pp. 1008-1010, 2015.

    第二章
    [1]O. Ambache, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, pp. 3222-3233, 1999.
    [2]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell and M. Stutzmann, “Two dimensional electron gas induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, pp. 334-344, 2000.
    [3]I. P. Smorchkova, C. R. Elsass, J. P. Ibbetson, R. Vetury, B. Heying, P. Fini, E. Haus, S. P. DenBaar, J. S. Speck and U. K. Mishra, “Polariza-tion-induced charge and electron mobility in AlGaN/GaN heterostruc-tures grown by plasma-assisted molecular-beam epitaxy,” J. Appl. Phys., vol. 86, pp. 4520-4526, 1999.
    [4]F. Sacconi, A. D. Carlo, P. Lugli and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of Al-GaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Elec-tron Devices., vol. 48, pp. 450-457, 2001.
    [5]M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm and W. Schaff, “Temperature activated conductance in GaN/AlGaN hetero-structure field effect transistors operating at temperatures up to 300oC,” Appl. Phys. Lett., vol. 66, pp. 1083-1085, 1995.
    [6]E. H. Chen, D. T. Mclnturff, T. P. Chin, M. R. Melloch and J. M. Woodall, “Use of annealed low-temperature grown GaAs as a selective photoetch-stop layer,” Appl. Phys. Lett., vol. 68, pp. 1678-1680, 1996.
    [7]L. H. Huang and C. T. Lee, “Investigation and analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation method,” J. Electrochem. Soc., vol. 154, pp. 862-866, 2007.
    [8]K. Ohi, J. T. Asubar, K. Nishiguchi, and T. Hashizume, “Current Sta-bility in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. Elec. Device, vol. 60, pp. 2997-3004, 2013.
    [9]Z. Hamaizia, N. Sengouga, M. Missous, and M.C.E. Yagoub, “Small-signal modeling of pHEMTs and analysis of their microwave performance,” J. Eng. Appl. Sci., vol. 5, pp. 252-256, 2010.
    [10]F. Medjdoub, J. Derluyn, K. Cheng, M. Leys, S. Degroote, D. Marcon, D. Visalli, M. Van Hove, M. Germain, and G. Borghs, “Low on-resistance high-breakdown normally off AlN/GaN/AlGaN DHFET on Si substrate,” IEEE Electron Device Lett., vol. 31, pp. 111-113, 2010.
    [11]S. Karmalkar and U. K. Mishra, “Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate,” IEEE Trans. Electron Devices, vol. 48, pp. 1515-1521, 2001.
    [12]H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. K. Mishra, “High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates,” IEEE Electron Device Lett., vol. 25, pp. 161-163, 2004.
    [13]Y. L. Chiou, L. H. Huang, and C. T. Lee, “Photoelectrochemical func-tion in gate-recessed AlGaN/GaN metal-oxide-semiconductor high-electron-mobility,” IEEE Electron Device Lett., vol. 31, pp. 183-185, 2010.
    [14]A. Alfredo and C. Galup-Montoro, “A compact model for flicker noise in MOS transistors for analog circuit design,” IEEE Trans. Electron Devices, vol. 50, pp. 1815-1818, 2003.
    [15]L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f noise in MOS devices, mobility or number fluctuations,” IEEE Trans. Electron Devices, vol. 41, pp. 1936-1945, 1994.
    [16]Fan-Chi Hou, Gijs Bosman, and Mark E. Law, “Simulation of oxide trapping noise in submicron n-channel MOSFETs,” IEEE Trans. Elec-tron Devices, vol. 50, pp. 846-852, 2003.
    [17]F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron Devices, vol. 41, pp. 1926-1935, 1994.
    [18]F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme, “Ex-perimental studies on 1/f noise,” Rep. Prog. Phys., vol. 44, pp. 479-531, 1981.
    [19]S. L. Rumyantsev, N. Pala, M. E. Levinshtein, A. Asifkhan, G. Simin, and J. Yang, “Low frequency noise in GaN/AlGaN heterostructure field effect transistors in non-ohmic region,” J. Appl. Phys., vol. 93, pp. 10030-10034, 2003.
    [20]S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, M. Asifkhan, G. Simin, X. Hu, and J. Yang, “Low frequency noise of GaN metal semiconductor and metal oxide semiconductor field effect tran-sistors,” J. Appl. Phys., vol. 90, pp. 310-314, 2001.
    [21]S. K. Jha C. Surya, K. J. Chen, K. M. Lau, and E. Jelencovic, “Low-frequency noise properties of double channel AlGaN/GaN HEMTs,” Solid-State Electron., vol. 52, pp. 606-611, 2008.
    [22]S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, P. A. Ivanov, M. Asifkhan, G. Simin, X. Hu, and J. Yang, “Concentration dependence of the 1/f noise in AlGaN/GaN heterostructure field effect transistors,” Semicond. Sci. Technol., vol. 17, pp. 476-479, 2002.
    [23]C. Y. Chan, T. C. Lee, S. S. H. Hsu, L. Chen, and Y. S. Lin, “Impacts of gate recess and passivation on AlGaN/GaN high electron mobility transistors,” Jpn. J. Appl. Phys., vol. 46, pp. 478-484, 2007.

    第三章
    [1]P. E. Riley, “Plasma etching of aluminum metallizations for ultra largescale integrated circuits,” J. Electrochem. Soc., vol. 140, pp. 1518-1522, 1993.
    [2]S. K. Ghandhi, VLSI fabrication principles, John Wiley & Sons, p. 635, 1994.
    [3]C. T. Lee, Y. J. Lin and C. H. Lin, “Nanalloyed ohmic mechanism of TiN interfacial layer in Ti/Al contact to (NH4)2Sx-treated n-type GaN layers,” J. Appl. Phys., vol. 92, pp. 3825-3829, 2002.
    [4]S. J. Lee and C. R. Crowell, “Parasitic source and drain resistance in high-electron-mobility transistor,” Solid-State Electron., vol. 28, pp. 659-668, 1985.
    [5]Q. Z. Liu, L. S. Yu, F. Deng, S. S. Lau, Q. Chen, J. W. Yang and M. A. Khan, “Study of contact formation in AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 71, pp. 1658-1660, 1997.
    [6]M. E. Lin, Z. Ma, F. Y. Huang, Z. F. Fan, L. H. Allen and H. Morkoç, “Low resistance ohmic contacts on wide band-gap GaN,” Appl. Phys. Lett., vol. 64, pp. 1003-1005, 1994.
    [7]M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada and N. Hara, “Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-k gate dielectrics,” IEEE Electron Device Lett., vol. 31, pp 189-191, 2010.
    [8]Y. L. Chiou and C. T. Lee, “Band alignment and performance im-provement mechanisms of chlorine-treated ZnO-Gate AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistors,” IEEE Trans. Electron Devices., vol. 58, pp 3869-3876. 2011.

    第四章
    [1]C. T. Lee and H. Y. Juo, “Multiple-submicron channel array gate-recessed AlGaN/GaN Fin-MOSHEMTs”, IEEE J. Electron De-vices Soc., vol. 6, pp. 183-188, 2018.
    [2]L. H. Huang and C. T. Lee, “Investigation and analysis of AlGaN MOS devices with an oxidized layer grown using the photoelectrochemical oxidation method”, J. Electrochem. Soc., vol. 154, pp. 862-866, 2007.
    [3]S. Arulkumaran, T. Egaway, L. Selvaraj and H. Ishikawa, “On the ef-fects of gate-recess etching in current-collapse of different cap layers grown AlGaN/GaN high-electron-mobility-transistors,” Jpn. J. Appl. Phys., vol. 45, pp. 220-223, 2006.
    [4]J. W. Chung, T. W. Kim, and T. Palacios, “Advanced gate technologies for state-of-the-art fT in AlGaN/GaN HEMTs”, IEDM Tech. Dig., vol. 10, pp. 676-679, 2010.
    [5]E. Y. Chang, C. I. Kuo, H. T. Hsu, C. Y. Chiang, and Y. Miyamoto, “InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave appli-cations”, Jpn. J. Appl. Phys., vol. 6, pp. 034001-1-034001-3, 2013.
    [6]S. J. Yeon, M. Park, J. Choi, and K. Seo, “610 GHz InAlAs/In0.75GaAs metamorphic HEMTs with an ultra-short 15-nm-gate”, IEDM Tech. Dig., vol. 07, pp613-616, 2007.
    [7]Y. Yamashita, A. Endoh, K. Shinohara, M. Higashiwaki, K. Hikosaka, T.Mimura, S. Hiyamizu, and T. Matsui, “Ultra-short 25-nm-gate lat-tice-matched InAlAs/InGaAs HEMTs within the range of 400 GHz cutoff frequency”, IEEE Electron Device Lett., vol. 22, pp. 367-369, 2001.
    [8]K. L.Tan, R. M. Dia, D. C. Streit, T. Lin, T. Q. Trinh, A. C. Han, P. H. Liu, P. D. Chow, and H. C. Yen, “94-GHz 0.1-μm T-gate low-noise pseudomorphic InGaAs HEMTs”, IEEE Trans. Electron Devices, vol. 11, pp. 585-587, 1990.
    [9]G. H. Jessen, R. Fitch, Jr., J. K. Gillespie, G. Via, A. Crespo, D. Langley, Daniel. J. Denninghoff, M. Trejo, and Eric. R. Heller, “Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-Gate Devices”, IEEE Trans. Electron Devices, vol. 53, pp. 2589-2597, 2007.
    [10]T. Mizutani, M. Ito, S. Kishmoto, and F. Nakamura, “AlGaN/GaN HEMTs with thin InGaN cap layer for normally off operation”, IEEE Trans. Electron Devices, vol. 28, pp. 549-551, 2007.
    [11]J. W. Chung, W. E. Hoke, E. M. Chumbes, and T. Palacios, “Al-GaN/GaN HEMT with 300-GHz fmax”, IEEE Electron Device Lett., vol. 31, pp. 195-197, 2010.
    [12]V. Kilchytska, A. Neve, L. Vancaillie, D. Levacq, S. Adriaensen, H. V. Meer, K. D. Meyer, C. Raynaud, M. Dehan, J. P. Raskin, and D. Flandre, “Influence of device engineering on the analog and rf per-formance of SOI MOSFETs”, IEEE Electron Device Lett., vol. 50, pp. 577-588, 2003.
    [13]R. J. Trew, D. S. Green and J. B. Shealy, “AlGaN/GaN HFET reliablity,” IEEE Microw. Mag., vol. 07, pp. 116-127, 2009.
    [14]M. Alsharef, M. Christiansen, R. Granzner, E. Ture, R. Quay, O. Am-bacher, and F. Schwierz, “RF performance of trigate GaN HEMTs,” IEEE Trans. Electron Devices, vol. 63, pp. 4255-4261, 2016.
    [15]S. Vodapally, C. G. Theodorou, Y. Bae, G. Ghibaudo, S. Cristoloveanu, K. S. Im, and J. H. Lee, “Comparison for 1/f noise characteristics of AlGaN/GaN FinFET and planar MISHFET,” IEEE Trans. Electron Devices, vol. 64, pp. 3634-3638, 2017.
    [16]K. Ohi and T. Hashizume, “Drain current stability and control ability of threshold voltage and subthreshold current in a multi-mesa-channel AlGaN/GaN hight electron mobility transistor,” Jpn. J. Appl. Phys., vol. 48, pp. 081002-081002-5, 2009.
    [17]S. Takashima, “Sidewall dominated characteristics on Fin-gate Al-GaN/GaN MOS-Channel-HEMTs,” IEEE Trans. Electron Devices, vol. 60, pp 3025-3031. 2013.
    [18]S. Vodapally, Y. I. Jang, I. M. Kang, I. T. Cho, J. H. Lee, Y. Bae, G. Ghibaudo, S. Cristoloveanu, K. S. Im, and J. H. Lee, “1/f-Noise in AlGaN/GaN nanowire omega-FinFETs,” IEEE Electron Device Lett., vol. 38, pp. 252-254, 2017.
    [19]J. Lu, Y. Wang, L. Ma, and Z. Yu, “A new small-signal modeling and extraction method in AlGaN/GaN HEMTs,” Solid-State Electronics. vol. 52, pp. 115-120, 2008.
    [20]M. Berroth and R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE T. Microw. Theory, vol. 38, pp. 891-895, 1990.

    無法下載圖示 校內:2024-01-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE