| 研究生: |
洪文誠 Hung, Wen-Cheng |
|---|---|
| 論文名稱: |
含苯甲酸與氮雜環配位基的鋅錯合物之合成及構造 Synthesis and Structure of Zinc Complexes with Benzoate and Nitrogen Heterocycles |
| 指導教授: |
許拱北
Shiu, Kom-Bei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 配位高分子 、錯合物 、鍵結模式 |
| 外文關鍵詞: | coordination polymer, complex, coordination mode |
| 相關次數: | 點閱:60 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ZnO與三種羧酸進行反應後得到的產物再與二種pyrazole及imidazole衍生的雙牙配位基進行反應,得到四種新的錯合物,包含雙核錯合物[ Zn2(BAc)4 ]n (1)、三核錯合物[ Zn3(BAc)6(mpz)2 ]n (2)、三核錯合物[ Zn3(mTAC)6(mpz) ]n (3)、雙核錯合物 Zn2(oTAC)4(pim)2 (4)
將得到的結果與實驗室之前所得到的含Cd錯合物進行比較
[ Cd2(BAc)10(mpz)2 ] n (5)、[ Cd3(mTAC)6(mpz)2 ]n (6)、[ Cd3(oTAC)6(pim)2 ]n (7)、[ Cd3(BAc)4(CH3OH)4 ]n (8)
( mpz = N1,N1,-m-phenylenedimethylene-bis(pyrazole),
pim = N1,N1,-p-phenylenedimethylene-bis(imidazole),
BAc = Benzoic acid, oTAC = o-toluic acid, mTAC = m-toluic acid )
本實驗中所有錯合物均藉由元素分析、液態NMR、UV-VIS以及螢光光譜鑑定,每一個單晶構造都利用X-Ray單晶繞射數據來得到。
Synthesis and Structure of Zinc Complexes with Benzoate and Nitrogen Heterocycles
Wen-Cheng Hung
Kom-Bei Shiu
Department of Chemistry, National Cheng-Kung University
SUMMARY
Four new Zn complexes comparing with the four structures containing Cd atoms.All new copmlexes were characterized by elemental analyses, liquid-state NMR, UV-VIS and PL spectra. Single-crystal structure of each complex were determined by single-crystal diffraction data.
Key words: Metal-Organic coordination Polymer, Complex, Coordination Mode
INTRODUCTION
Products that obtained from the reaction of ZnO、three kinds of benzoic acids and two kinds of nitrogen-containing bidentate ligands deriving from pyrazole and imidazole. There are totally four new Zn containing complexes , including dinuclear complexes [Zn3(BAc)4]n (1), Zn2(oTAC)4(pim)2 (4) and trinuclear complexes [Zn3(BAc)6(mpz)2]n (2), [Zn3(mTAC)6(mpz)]n (3)
We compare the results with the four structures containing Cd atoms which were synthesized in lab : [Cd2(BAc)10(mpz)2]n(5), [Cd3(mTAC)6(mpz)2]n(6), [Cd3(oTAC)6(pim)2]n (7), [Cd3(BAc)4(CH3OH)4]n (8)
MATERIALS AND METHODS
Starting materials containing Zn were synthesized from the reaction that ZnO mixed with three kinds of benzoic acids separately. Reflux in ethanol for three days and dry the solution can obtain white solid starting materials. Crystalization is in a vapor way to get the crystals, using methanol as the solvent.
RESULTS AND DISCUSSION
Table 6, Complex (1) bond distance
Bonding atom Bond distance (Å)
Zn(1)-O(1) 1.972(2)
Zn(1)-O(3) 1.934(3)
Zn(1)-O(5) 2.643(3)
Zn(1)-O(9) 1.972(3)
Zn(2)-O(2) 2.045(3)
Zn(2)-O(4) 2.090(3)
Zn(2)-O(6) 2.043(3)
Zn(2)-O(7) 2.146(2)
Table 7, Complex (1) bond angle
Bonding atom bond angle (deg)
O(1)-Zn(1)-O(3) 104.945(1)
O(1)-Zn(1)-O(5) 119.851(1)
O(1)-Zn(1)-O(9) 109.645(1)
O(3)-Zn(1)-O(5) 115.565(1)
O(3)-Zn(1)-O(9) 106.599(1)
O(5)-Zn(1)-O(9) 99.429(1)
O(2)-Zn(2)-O(4) 113.791(1)
O(2)-Zn(2)-O(6) 111.116(1)
O(2)-Zn(2)-O(7) 109.692(1)
O(4)-Zn(2)-O(6) 111.911(1)
O(4)-Zn(2)-O(7) 116.414(1)
O(6)-Zn(2)-O(7) 97.811(1)
Table 8, Complex (2) bond distance
Bonding atom Bond distance (Å)
Zn(1)-O(1) 1.972(2)
Zn(1)-O(3) 1.934(3)
Zn(1)-O(5) 2.643(3)
Zn(1)-O(6) 1.972(3)
Zn(1)-N(1) 2.045(3)
Zn(2)-O(2) 2.090(3)
Zn(2)-O(4) 2.043(3)
Zn(2)-O(5) 2.146(2)
Zn(2)-O(2)’ 2.090(3)
Zn(2)-O(4)’ 2.043(3)
Zn(2)-O(5)’ 2.146(2)
Zn(1)’-O(1)’ 1.918(2)
Zn(1)’-O(3)’ 1.934(3)
Zn(1)’-O(5)’ 2.643(3)
Zn(1)’-O(6)’ 1.972(3)
Zn(1)’-N(1)’ 2.045(3)
Table 9, Complex (2) bond angle
Bonding atom bond angle (deg) Bonding atom bond angle (deg)
O(1)-Zn(1)-O(3) 128.1(10) N(2)-Zn(1)-N(8) 106.023(2)
O(1)-Zn(1)-O(5) 91.987(9) O(2)-Zn(2)-O(4) 93.9(10)
O(1)-Zn(1)-O(6) 119.153(1) O(2)-Zn(2)-O(5) 94.666(1)
O(1)-Zn(1)-N(1) 101.769(1) O(2)-Zn(2)-O(2)’ 180.000(1)
O(3)-Zn(1)-O(4) 53.785(3) O(2)-Zn(2)-O(4)’ 86.1(10)
O(3)-Zn(1)-O(5) 89.982(2) O(2)-Zn(2)-O(5)’ 85.334(1)
O(3)-Zn(1)-O(8) 126.905(2) O(4)-Zn(2)-O(5) 92.619(1)
O(3)-Zn(1)-N(2) 87.219(2) O(4)-Zn(2)-O(2)’ 86.1(10)
O(3)-Zn(1)-N(8) 145.811(3) O(4)-Zn(2)-O(4)’ 180.000(1)
O(4)-Zn(1)-O(5) 114.754(3) O(4)-Zn(2)-O(5)’ 87.381(1)
O(4)-Zn(1)-O(8) 163.454(2) O(5)-Zn(2)-O(4) 93.9(10)
O(4)-Zn(1)-N(2) 113.946(2) O(5)-Zn(2)-O(2)’ 85.334(1)
O(4)-Zn(1)-N(8) 92.266(3) O(5)-Zn(2)-O(4)’ 87.381(1)
O(5)-Zn(1)-O(8) 51.018(2) O(5)-Zn(2)-O(5)’ 180.000(1)
O(5)-Zn(1)-N(2) 116.055(2) O(2)’-Zn(2)-O(4)’ 93.9(10)
O(5)-Zn(1)-N(8) 110.752(2) O(2)’-Zn(2)-O(5)’ 94.666(1)
O(8)-Zn(1)-N(2) 82.122(2) O(4)’-Zn(2)-O(5)’ 92.619(1)
O(8)-Zn(1)-N(8) 86.639(2) O(2)-Zn(2)-O(5) 94.666(1)
Table 10, Complex (3) bond distance
Bonding atom Bond distance (Å)
Zn(1)-O(1) 2.098(2)
Zn(1)-O(2) 2.328(2)
Zn(1)-O(3) 1.949(2)
Zn(1)-O(5) 1.960(2)
Zn(1)-N(1) 2.037(2)
Zn(2)-O(2) 2.084(2)
Zn(2)-O(4) 2.077(2)
Zn(2)-O(6) 2.034(2)
Zn(2)-O(7) 2.193(2)
Zn(2)-O(9) 2.019(2)
Zn(2)-O(11) 2.206(2)
Zn(3)-O(7) 2.718(2)
Zn(3)-O(8) 1.952(2)
Zn(3)-O(10) 1.968(3)
Zn(3)-O(11) 2.021(2)
Zn(3)-O(12) 2.531(2)
Zn(3)-N(3) 2.013(2)
Table 11, Complex (3) bond angle
Bonding atom bond angle (deg) Bonding atom bond angle (deg)
O(1)-Zn(1)-O(2) 58.467(7) O(6)-Zn(2)-O(9) 172.206(8)
O(1)-Zn(1)-O(3) 100.147(7) O(6)-Zn(2)-O(11) 85.354(7)
O(1)-Zn(1)-O(5) 128.854(8) O(7)-Zn(2)-O(9) 90.540(8)
O(1)-Zn(1)-N(1) 96.288(8) O(7)-Zn(2)-O(11) 89.567(7)
O(2)-Zn(1)-O(3) 100.321(7) O(9)-Zn(2)-O(11) 89.099(7)
O(2)-Zn(1)-O(5) 88.926(8) O(7)-Zn(3)-O(8) 53.840(7)
O(2)-Zn(1)-N(1) 146.429(8) O(7)-Zn(3)-O(10) 90.961(8)
O(3)-Zn(1)-O(5) 125.528(8) O(7)-Zn(3)-O(11) 80.175(6)
O(3)-Zn(1)-N(1) 106.171(8) O(7)-Zn(3)-O(12) 92.291(6)
O(5)-Zn(1)-N(1) 92.105(8) O(7)-Zn(3)-N(3) 162.787(7)
O(2)-Zn(2)-O(4) 92.877(7) O(8)-Zn(3)-O(10) 110.0(10)
O(2)-Zn(2)-O(6) 91.079(8) O(8)-Zn(3)-O(11) 124.220(8)
O(2)-Zn(2)-O(7) 84.658(8) O(8)-Zn(3)-O(12) 91.895(8)
O(2)-Zn(2)-O(9) 93.908(8) O(8)-Zn(3)-N(3) 109.125(9)
O(2)-Zn(2)-O(11) 173.508(7) O(10)-Zn(3)-O(11) 99.331(8)
O(4)-Zn(2)-O(6) 95.849(8) O(10)-Zn(3)-O(12) 154.882(8)
O(4)-Zn(2)-O(7) 177.521(7) O(10)-Zn(3)-N(3) 98.399(9)
O(4)-Zn(2)-O(9) 89.885(8) O(11)-Zn(3)-O(12) 56.852(6)
O(4)-Zn(2)-O(11) 92.882(6) O(11)-Zn(3)-N(3) 112.203(8)
O(6)-Zn(2)-O(7) 83.958(8) O(12)-Zn(3)-N(3) 85.360(8)
Table 12, Complex (4) bond distance
Bonding atom Bond distance (Å)
Zn(1)-O(3) 2.571(8)
Zn(1)-O(4) 2.054(7)
Zn(1)-O(5) 1.950(4)
Zn(1)-O(8) 2.859(5)
Zn(1)-N(2) 2.007(5)
Zn(1)-N(8) 2.038(6)
Zn(1)’-O(3) 2.571(8)
Zn(1)’-O(4) 2.054(7)
Zn(1)’-O(5) 1.950(4)
Zn(1)’-O(8) 2.859(5)
Zn(1)’-N(2) 2.007(5)
Zn(1)’-N(8) 2.038(6)
Table 13, Complex (4) bond angle
Bonding atom bond angle (deg) Bonding atom bond angle (deg)
O(3)-Zn(1)-O(4) 53.785(3) O(4)-Zn(1)-N(8) 92.266(3)
O(3)-Zn(1)-O(5) 89.982(2) O(5)-Zn(1)-O(8) 51.018(1)
O(3)-Zn(1)-O(8) 126.905(2) O(5)-Zn(1)-N(2) 116.055(2)
O(3)-Zn(1)-N(2) 87.219(2) O(5)-Zn(1)-N(8) 110.752(2)
O(3)-Zn(1)-N(8) 145.811(3) O(8)-Zn(1)-N(2) 82.122(2)
O(4)-Zn(1)-O(5) 114.754(3) O(8)-Zn(1)-N(8) 86.639(2)
O(4)-Zn(1)-O(8) 163.454(2) N(2)-Zn(1)-N(8) 106.023(2)
O(4)-Zn(1)-N(2) 113.946(2)
Table 22, Coordination modes in complex(1)、(8)
[ Zn2(BAc)4 ]n-(1) [ Cd3(BAc)4(CH3OH)4 ]n-(8)
bridging
Bridging/chelating
Table 23,Coordination modes in complex(4)、(7)
[ Zn2(oTAC)4(pim)2 ]n-¬(4) [ Cd3(oTAC)6(pim)2 ]n-(7)
monodentate
bridging
Bridging/chelating
Table 24,Coordination modes in complex(3)、(6)
[ Zn3(mTAC)6(mpz) ]n-(3) [ Cd3(mTAC)6(mpz)2 ]n-(6)
bridging
Bridging/chelating
Table 25,Coordination modes in complex(2)、(5)
[ Zn3(BAc)6(mpz)2 ]n-(2) [ Cd2(BAc)10(mpz)2 ]n-(5)
bridging
Bridging/chelating
Table 26, Coordination numbers in metal and coordination modes
Coordination number coordination mode
Zn 4 (monodentate)
5、6 (bridging) 、 (Bridging/chelating)
Cd 6、7 (bridging) 、 (Bridging/chelating)
CONCLUSION
In this experiment, we obtained four new complexes.Complex (1)、(2)、(3) are one dimension coordination polymers, the complex (4) is a zero dimension structure. There are dinuclear and trinuclear existing in these complexes.
1. R. A. Heintz, H. H. Zhao, O. Y. Xiang, G. Grandinetti, J. Cowen, K. R. Dunbar, Inorg. Chem. 1999, 38, 144-144.
2. S. Han, J. L. Manson, J. Kim, J. S. Miller, Inorg. Chem. 2000, 39, 4182-4182.
3. K. Ingo, J. S. Timothy, A. B. Elizabeth, J. P. Cassie, O. L. Paraskevi, H. B. Wesley, K. T. Michael, W. Christian, H. Nilay, S. Sven, Inorg. Chem. 2014, 53, 2133-2143.
4. B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1990, 112, 1546-1546.
5. P. Losier, M. J. Zaworotko, Angew. Chem. , Int, Ed. 1996, 35, 2779-2782.
6. H. Li, M. Eddaoudi, T. L. Groy, O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 8571-8572.
7. M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Angew. Chem., Int. Ed.1997, 119, 4117-4117.
8. K. Endo, T. Koike, T. Sawaki, O. Hayashida, H. Masuda, Y. Aoyama, J. Am. Chem. Soc. 1997, 119, 4117-4122.
9. T. Sawaki, T. Dewa, Y. Aoyama, J. Am. Chem. Soc. 1998, 120, 8539-8540.
10. J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature, 2000, 404, 382-385.
11. O. M. Yaghi, G. M. Li, H. L. Li, Nature, 1995, 378, 703-706.
12. O. M. Yaghi, H. L. Li, T. L. Groy, J. Am. Chem. Soc. 1996, 118, 9096-9101.
13. Z. M. Wang, S. Tezuka, H. Kanoh, Chem. Mater. 2001, 13, 530-537.
14. K. Biradha, D. Dennis, V. A. MacKinnon, C. V. K. Sharma, M. J. Zaworotko, J. Am. Chem. Soc. 1998, 120, 11894-11903.
15. H. J. Choi, M. P. Suh, J. Am. Chem. Soc. 1998, 120, 10622-10628.
16. H. Li, M. Eddaoudi, J. Plevert, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 12409-12410.
17. B. L. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 11559-11560.
18. M. Eddaoudi, H. L. Li, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 1391-1397.
19. H. Kumagai, Y. Oka, M. Akita-Tanaka, K. Inoue, Inorg. Chim. Acta, 2002, 332, 176-180.
20. A. M. Beatty, Crystengcomm, 2001, 243-255.
21. A. Nangia, Curr. Opin. Solid State Mater. Sci. 2001, 5, 115-122.
22. M. Adokoro, T. Shiomi, K. Nakasuji, Inorg. Chem. 2001, 40, 5467-5482.
23. T. J. Prior, M. J. Rosseinsky, J. Am. Chem. Soc. Comm. 1972, 4, 225-226.
24. B. F. Hoskins, R. Robson, D. A. Slizys, J. Am. Chem. Soc. 1997, 119, 2952-2953.
25. M. Fujita, J. Yazaki, K. Ogura, J. Am. Chem. Soc. 1990, 112, 5645-5647.
26. H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature, 1999, 402, 276-279.
27. F. T. Zheng, J. Lin, Y. Su, L. Wen, Y. Liu, H. Zhu, Q.-J. Meng, Cryst. Growth Des. 2007, 7, 1863-1867.
28. A. Schaate, S. Klingelhöfer, P. Behrens, M. Wiebcke, Cryst. Growth Des. 2008, 8, 3200-3205.
29. X.-Z. Song, S.-Y. Song, C. Qin, S.-Q. Su, S.-N. Zhao, M. Zhu, Cryst. Growth Des. 2012, 12, 253-263.
30. W. Liu, J. Yu, J. Jiang, L. Yuan, B. Xu, Q. Liu, B. Qu, G. Zhang, CrystEngComm, 2011, 13, 2764-2773.
31. X. Li, R. Cao, D. Sun, W. Bi, Y. Wang, X. Li, M. Hong, Cryst. Growth Des. 2004, 4, 775-780.
32. M.L. Huang, L.-L. Wang, Acta Cryst. 2011. E67, 1470-1470.
33. N. N. LI, Y. H. Zhang, M. L. Zhang, Synth.React.Inorg.,Met.-Org.,Nano-Met.Chem. 2015, 45, 298-303.
34. T. Shi, ,W. Sun,W. Zhao, H. Wu,J. Qu, S. Diwu, X. Yang , Z. Anorg. Allg. Chem. 2014, 640, 2477-2483.
35. L. Wen, Y. Li, D. Dang, Z. Tian, Z. Ni, Q. Meng, J. Solid State Chem. 2005, 178,3336-3341.
36. Y. Y. Liu, Y. Y. Jiang, J. Yang, Y. Y. Liu, J. F. Ma, CrystEngComm. 2011, 13, 6118-6129.
37. X. M. Li,Y. H. Dong, Q. W. Wang , B. Liuc, Acta Cryst. 2007, E63, 1839–1840
38. S.Y. Liu, L. Tian, Acta Cryst. 2011, E67, 950-951.
39. X. Y. Cao, J. Zhang, Y. Kang, J. K. Cheng, Z. J. Li, X. Q. Wang, Y. H. Wen ,Y. G. Yao, Acta Cryst. 2004, C60, 350-352.
40. Y. Y. Liu, J. Li, J. F. Ma, J. C. Ma ,J. Yang, CrystEngComm. 2012, 14, 169-177.
41. R. Wang, F. Jiang, Y. Zhou, L. Han, M. Hong, Inorg. Chim. Acta. 2005, 385, 545-554.
42. C. B. Li, W. Fang, E.J. Dong, B. Liu, Y. W. Li, Acta Cryst. 2007, E63, 150-152.
43. Y. Y. Liu, J. F. Ma, J. Yang, Z. M. Su, Inorg. Chem. 2007, 46, 3027-3037.
44. Han Kwak , S. H. Lee , S. H. Kim , Y. M. Lee , Byeong Kwon Park , Y. J. Lee , J. Y. Jun , Cheal Kim , S. J. Kim , Youngmee Kim , Polyhedron 28, 2009, 553-561.
45. Z. H. Li, W. J. Ao, X. X. Wang ,X. Z. Fu, Acta Cryst. 2006, E62, 1048-1050.
46. E. Tang, Y. M. Dai,S. Lin, Acta Cryst,, 2004, C60, 433-434.
47. Y. F. Zhou, Y. J. Zhao, D. f. Sun, J. B. Weng, R. Cao, M. C. Hong, Polyhedron 2003, 22, 1231-1235.
48. D. P. Martin, M. A. Braverman , R. L. LaDuca, Cryst,. Growth Des. 2007, 7, 2609-2619.
49. A. Tarushi, X. Totta, C. P. Raptopoulou, V. Psycharis, G. P. D. P. Kessissoglou ,Dalton Trans. 2012, 41, 7082-7091.
50. G. Yin , Y. Zhang , B. Li , Y. Zhang, J Mol Struct. 2007 ,837, 263-268.
51. N. Sikdar, A. Hazra, T. K. Maji, Inorg. Chem. 2014, 53, 5993-6002.
52. X. He, C. Z. Lu, D. Q. Yuan, L. J. Chen,Q. Z. Zhang, C. D. Wu, Eur. J. Inorg. Chem. 2005, 4598-4606.
53. N. Phukan, J. B. Baruah, RSC Adv., 2013, 3, 1151-1157.
54. S. Banerjee, P. Rajakannu, R. J. Butcher, R. Murugavel, CrystEngComm. 2014, 16, 8429-8441.
55. C.-B. Li, Y.-W. Li, W. Fang, B. Liu and D.-Q. Li, Acta Cryst. 2006. E62, 3541-3543.
56. H. Sato, R. Matsuda, M. H. Mir, S. Kitagawa,Chem. Commun. 2012, 48, 7919-7921.
57. M. A. Hasan, N. Kumari, P. Kumar, B. Pathak, L. Mishra,Polyhedron. 2013, 50, 306-313.
58. L. Yan, Y. Xiao, C. Li, M. Liu,W. Li, N. Yang,Synth.React.Inorg.,Met.-Org.,Nano-Met.Chem.2014,44,829-835.
59. L.-J. Chen, S. Lin, M.-X. Yang, X.-Y. Wu,Acta Cryst. 2009. E65, 413-414.
60. F. Dai, H. He, D. Gao, F. Ye, D. Sun , Z. Pang, L. Zhang, G. Dong, C.Zhang, Inorg. Chim. Acta. 2009,362, 3987-3992.
61. H.-D. Guo, D.-F. Qiu, X.-M. Guo, G.-L. Zheng, X. Wang, S. Dang, H.-J. Zhang, CrystEngComm, 2009, 11, 2425-2430.
62. S.Bhattacharya, U.Sanyal, S.Natarajan, Cryst.Growth Des. 2011, 11, 735-747.
63. Y. Wang, N. Okabe,Inorganica Chimica Acta. 2005, 358, 3407-3416.
64. H. J. Park, M. P. Suh, Chem.Commun. 2010, 46, 610-612.
65. S. Sen, S.Neogi, A.Aijaz, Qiang Xu, P.K.Bharadwaj, Inorg.Chem. 2014, 53, 7591-7598.
66. X.-Y. Cao, Y.-G. Yao, Y.-Y. Qin, Q.-P. Lin, Z.-J. Li, J.-K. Cheng, R.-B. Zhang,CrystEngComm. 2009, 11, 1815-1818.
67. Y.-P. Wu, D.-S. Li, F. Fu, W.-W. Dong, G.-P. Yang, Y.-Y. Wang, Q.-Z. Shi, Polyhedron. 2012, 31, 188-195.
68. X.-C. Fu, X.-Y. Wang, M.-T. Li, C.-G. Wang, Acta Cryst. 2006, E62, 773-775.
69. X. He, X.-P. Lu, Z.-F. Ju, C.-J. Li, Q.-K. Zhang, M. X. Li, CrystEngComm. 2013, 15, 2731-2744.
70. Z.-X. Han, J.-J. Wang, H.-M. Hu, X.-L. Chen, Q.-R. Wu, D.-S. Li, Q.-Z. Shi, J. Mol Struct. 2008, 891, 364-369.
71. B. Gole, U. Sanyal, P. S. Mukherjee, Chem. Commun. 2015, 51, 4872-4875.
72. C. Qin, X. Wang, E. Wang, Y. Qi, H. Jin, S. Chang, L. Xu, J. Mol. Struct. 2005,749, 138-143.
73. H.-L. Zhu, J.-L. Lin, W. Xu, J. Zhang, Y.-Q. Zheng, J. Coord. Chem. 2011, 64, 2088-2100.
74. L. Wang, Q.-K. Liu, J.-P. Ma, Y.-B. Dong, J. Mol. Struct. 2015,1084, 1-8.
75. M. Du, X.-J. Jiang, X.-J. Zhao, Inorg. Chem. 2007, 46, 3984-3995.
76. X. Guo, H. Guo, H. Zou, Y. Qi, R. Chen,CrystEngComm. 2013, 15, 9112-9120.
77. F. Gandara, M. E. Medina, N. Snejko, E. G.-P., D. M. Proserpio, M. A. Monge, CrystEngComm. 2010, 12, 711-719.
78. Z.-H. Zhang, S.-C. Chen, J.-L. Mi, M.-Y. He, Q. Chen, M. Du, Chem. Commun. 2010, 46, 8427-8429.
79. A. Aijaz, P. Lama, P. K. Bharadwaj, Eur. J. Inorg. Chem. 2010, 3829-3834.
80. J.-Fu Lu, L.-J. Qiao, L.-Q. Li, Z.-H. Liu, J. Mol. Struct. 2015, 1081, 79-84.
81. S. Wang, R. Yun, Y. Peng, Q. Zhang, J. Lu,J. Dou, J. Bai,Cryst. Growth Des. 2012, 12, 79-92.
82. H. Sato, R. Matsuda, K. Sugimoto, M. Takata, S. Kitagawa, Nat. Mater. 2010, 9, 661-666.
83. X.-Y. Hou, X. Wang, F. Fu, J.-J. Wang, L. Tang, J. Coord. Chem. 2013, 66, 3126-3136.
84. T. Li, L.-R. Tang, Lin Yang, B. Huang, Acta Cryst. 2011. E67, 1262-1262.
85. H. Necefoglu, W. Clegg, A. J. Scott, Acta Cryst. 2001. E57, 472-474.
86. T. H.¨kelek, N. C¸aylak, H. lu, Acta Cryst. 2008. E64, 458-459.
87. S. Jin, H. Liu, G. Chen, Z. An, Y. Lou, K. Huang, D. Wang, Polyhedron. 2015. 95, 91-107.
88. J.-J. Wang,C.-S. Liu, T.-L. Hu, Z. Chang, C.-Y. Li, L.-F. Yan, P.-Q. Chen,
X.-H. Bu, Q. Wu, L.-J. Zhao, Z. Wang, X.-Z. Zhang, CrystEngComm. 2008. 10, 681-692.
89. D. Li, Acta Cryst. 2012. E68, 1462-1462.
90. J. G. Zhao, S. Gao, L. H. Huo, S. W. Ng, Acta Cryst. 2005. E61, 115-116.
91. B. Liu, Q. Xu, Acta Cryst. 2009. E65, 509-509.
92. C.-Y. Shi, Z.-H. Wu, A.-B. Shen, J.-M. Wu, Synth. React. Inorg. Met.-Org. Chem. 2015. 45, 648-650.
93. Q.-B. Bo, Z.-W. Zhang, J.-L. Miao, D.-Q. Wang, G.-X. Sun, CrystEngComm, 2011, 13, 1765-1767.
94. J. Yang, J. F. Ma, Y. Y. Liu, S. L. Li, G. L. Zheng, Eur. J. Inorg. Chem. 2005, 2174-2180.
95. C. M. Hartshorn, P. J. Steel, Aust. J. Chem. 1995, 48, 1587-1599.
96. 王期麟, 國立成功大學碩士論文, 2011年