簡易檢索 / 詳目顯示

研究生: 洪文誠
Hung, Wen-Cheng
論文名稱: 含苯甲酸與氮雜環配位基的鋅錯合物之合成及構造
Synthesis and Structure of Zinc Complexes with Benzoate and Nitrogen Heterocycles
指導教授: 許拱北
Shiu, Kom-Bei
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 121
中文關鍵詞: 配位高分子錯合物鍵結模式
外文關鍵詞: coordination polymer, complex, coordination mode
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ZnO與三種羧酸進行反應後得到的產物再與二種pyrazole及imidazole衍生的雙牙配位基進行反應,得到四種新的錯合物,包含雙核錯合物[ Zn2(BAc)4 ]n (1)、三核錯合物[ Zn3(BAc)6(mpz)2 ]n (2)、三核錯合物[ Zn3(mTAC)6(mpz) ]n (3)、雙核錯合物 Zn2(oTAC)4(pim)2 (4)

    將得到的結果與實驗室之前所得到的含Cd錯合物進行比較
    [ Cd2(BAc)10(mpz)2 ] n (5)、[ Cd3(mTAC)6(mpz)2 ]n (6)、[ Cd3(oTAC)6(pim)2 ]n (7)、[ Cd3(BAc)4(CH3OH)4 ]n (8)

    ( mpz = N1,N1,-m-phenylenedimethylene-bis(pyrazole),
    pim = N1,N1,-p-phenylenedimethylene-bis(imidazole),
    BAc = Benzoic acid, oTAC = o-toluic acid, mTAC = m-toluic acid )

    本實驗中所有錯合物均藉由元素分析、液態NMR、UV-VIS以及螢光光譜鑑定,每一個單晶構造都利用X-Ray單晶繞射數據來得到。

    Synthesis and Structure of Zinc Complexes with Benzoate and Nitrogen Heterocycles

    Wen-Cheng Hung
    Kom-Bei Shiu
    Department of Chemistry, National Cheng-Kung University

    SUMMARY

    Four new Zn complexes comparing with the four structures containing Cd atoms.All new copmlexes were characterized by elemental analyses, liquid-state NMR, UV-VIS and PL spectra. Single-crystal structure of each complex were determined by single-crystal diffraction data.

    Key words: Metal-Organic coordination Polymer, Complex, Coordination Mode

    INTRODUCTION

    Products that obtained from the reaction of ZnO、three kinds of benzoic acids and two kinds of nitrogen-containing bidentate ligands deriving from pyrazole and imidazole. There are totally four new Zn containing complexes , including dinuclear complexes [Zn3(BAc)4]n (1), Zn2(oTAC)4(pim)2 (4) and trinuclear complexes [Zn3(BAc)6(mpz)2]n (2), [Zn3(mTAC)6(mpz)]n (3)

    We compare the results with the four structures containing Cd atoms which were synthesized in lab : [Cd2(BAc)10(mpz)2]n(5), [Cd3(mTAC)6(mpz)2]n(6), [Cd3(oTAC)6(pim)2]n (7), [Cd3(BAc)4(CH3OH)4]n (8)

    MATERIALS AND METHODS

    Starting materials containing Zn were synthesized from the reaction that ZnO mixed with three kinds of benzoic acids separately. Reflux in ethanol for three days and dry the solution can obtain white solid starting materials. Crystalization is in a vapor way to get the crystals, using methanol as the solvent.

    RESULTS AND DISCUSSION

    Table 6, Complex (1) bond distance
    Bonding atom Bond distance (Å)

    Zn(1)-O(1) 1.972(2)
    Zn(1)-O(3) 1.934(3)
    Zn(1)-O(5) 2.643(3)
    Zn(1)-O(9) 1.972(3)
    Zn(2)-O(2) 2.045(3)
    Zn(2)-O(4) 2.090(3)
    Zn(2)-O(6) 2.043(3)
    Zn(2)-O(7) 2.146(2)

    Table 7, Complex (1) bond angle
    Bonding atom bond angle (deg)
    O(1)-Zn(1)-O(3) 104.945(1)
    O(1)-Zn(1)-O(5) 119.851(1)
    O(1)-Zn(1)-O(9) 109.645(1)
    O(3)-Zn(1)-O(5) 115.565(1)
    O(3)-Zn(1)-O(9) 106.599(1)
    O(5)-Zn(1)-O(9) 99.429(1)
    O(2)-Zn(2)-O(4) 113.791(1)
    O(2)-Zn(2)-O(6) 111.116(1)
    O(2)-Zn(2)-O(7) 109.692(1)
    O(4)-Zn(2)-O(6) 111.911(1)
    O(4)-Zn(2)-O(7) 116.414(1)
    O(6)-Zn(2)-O(7) 97.811(1)

    Table 8, Complex (2) bond distance
    Bonding atom Bond distance (Å)

    Zn(1)-O(1) 1.972(2)
    Zn(1)-O(3) 1.934(3)
    Zn(1)-O(5) 2.643(3)
    Zn(1)-O(6) 1.972(3)
    Zn(1)-N(1) 2.045(3)
    Zn(2)-O(2) 2.090(3)
    Zn(2)-O(4) 2.043(3)
    Zn(2)-O(5) 2.146(2)
    Zn(2)-O(2)’ 2.090(3)
    Zn(2)-O(4)’ 2.043(3)
    Zn(2)-O(5)’ 2.146(2)
    Zn(1)’-O(1)’ 1.918(2)
    Zn(1)’-O(3)’ 1.934(3)
    Zn(1)’-O(5)’ 2.643(3)
    Zn(1)’-O(6)’ 1.972(3)
    Zn(1)’-N(1)’ 2.045(3)

    Table 9, Complex (2) bond angle
    Bonding atom bond angle (deg) Bonding atom bond angle (deg)
    O(1)-Zn(1)-O(3) 128.1(10) N(2)-Zn(1)-N(8) 106.023(2)
    O(1)-Zn(1)-O(5) 91.987(9) O(2)-Zn(2)-O(4) 93.9(10)
    O(1)-Zn(1)-O(6) 119.153(1) O(2)-Zn(2)-O(5) 94.666(1)
    O(1)-Zn(1)-N(1) 101.769(1) O(2)-Zn(2)-O(2)’ 180.000(1)
    O(3)-Zn(1)-O(4) 53.785(3) O(2)-Zn(2)-O(4)’ 86.1(10)
    O(3)-Zn(1)-O(5) 89.982(2) O(2)-Zn(2)-O(5)’ 85.334(1)
    O(3)-Zn(1)-O(8) 126.905(2) O(4)-Zn(2)-O(5) 92.619(1)
    O(3)-Zn(1)-N(2) 87.219(2) O(4)-Zn(2)-O(2)’ 86.1(10)
    O(3)-Zn(1)-N(8) 145.811(3) O(4)-Zn(2)-O(4)’ 180.000(1)
    O(4)-Zn(1)-O(5) 114.754(3) O(4)-Zn(2)-O(5)’ 87.381(1)
    O(4)-Zn(1)-O(8) 163.454(2) O(5)-Zn(2)-O(4) 93.9(10)
    O(4)-Zn(1)-N(2) 113.946(2) O(5)-Zn(2)-O(2)’ 85.334(1)
    O(4)-Zn(1)-N(8) 92.266(3) O(5)-Zn(2)-O(4)’ 87.381(1)
    O(5)-Zn(1)-O(8) 51.018(2) O(5)-Zn(2)-O(5)’ 180.000(1)
    O(5)-Zn(1)-N(2) 116.055(2) O(2)’-Zn(2)-O(4)’ 93.9(10)
    O(5)-Zn(1)-N(8) 110.752(2) O(2)’-Zn(2)-O(5)’ 94.666(1)
    O(8)-Zn(1)-N(2) 82.122(2) O(4)’-Zn(2)-O(5)’ 92.619(1)
    O(8)-Zn(1)-N(8) 86.639(2) O(2)-Zn(2)-O(5) 94.666(1)

    Table 10, Complex (3) bond distance
    Bonding atom Bond distance (Å)

    Zn(1)-O(1) 2.098(2)
    Zn(1)-O(2) 2.328(2)
    Zn(1)-O(3) 1.949(2)
    Zn(1)-O(5) 1.960(2)
    Zn(1)-N(1) 2.037(2)
    Zn(2)-O(2) 2.084(2)
    Zn(2)-O(4) 2.077(2)
    Zn(2)-O(6) 2.034(2)
    Zn(2)-O(7) 2.193(2)
    Zn(2)-O(9) 2.019(2)
    Zn(2)-O(11) 2.206(2)
    Zn(3)-O(7) 2.718(2)
    Zn(3)-O(8) 1.952(2)
    Zn(3)-O(10) 1.968(3)
    Zn(3)-O(11) 2.021(2)
    Zn(3)-O(12) 2.531(2)
    Zn(3)-N(3) 2.013(2)

    Table 11, Complex (3) bond angle
    Bonding atom bond angle (deg) Bonding atom bond angle (deg)
    O(1)-Zn(1)-O(2) 58.467(7) O(6)-Zn(2)-O(9) 172.206(8)
    O(1)-Zn(1)-O(3) 100.147(7) O(6)-Zn(2)-O(11) 85.354(7)
    O(1)-Zn(1)-O(5) 128.854(8) O(7)-Zn(2)-O(9) 90.540(8)
    O(1)-Zn(1)-N(1) 96.288(8) O(7)-Zn(2)-O(11) 89.567(7)
    O(2)-Zn(1)-O(3) 100.321(7) O(9)-Zn(2)-O(11) 89.099(7)
    O(2)-Zn(1)-O(5) 88.926(8) O(7)-Zn(3)-O(8) 53.840(7)
    O(2)-Zn(1)-N(1) 146.429(8) O(7)-Zn(3)-O(10) 90.961(8)
    O(3)-Zn(1)-O(5) 125.528(8) O(7)-Zn(3)-O(11) 80.175(6)
    O(3)-Zn(1)-N(1) 106.171(8) O(7)-Zn(3)-O(12) 92.291(6)
    O(5)-Zn(1)-N(1) 92.105(8) O(7)-Zn(3)-N(3) 162.787(7)
    O(2)-Zn(2)-O(4) 92.877(7) O(8)-Zn(3)-O(10) 110.0(10)
    O(2)-Zn(2)-O(6) 91.079(8) O(8)-Zn(3)-O(11) 124.220(8)
    O(2)-Zn(2)-O(7) 84.658(8) O(8)-Zn(3)-O(12) 91.895(8)
    O(2)-Zn(2)-O(9) 93.908(8) O(8)-Zn(3)-N(3) 109.125(9)
    O(2)-Zn(2)-O(11) 173.508(7) O(10)-Zn(3)-O(11) 99.331(8)
    O(4)-Zn(2)-O(6) 95.849(8) O(10)-Zn(3)-O(12) 154.882(8)
    O(4)-Zn(2)-O(7) 177.521(7) O(10)-Zn(3)-N(3) 98.399(9)
    O(4)-Zn(2)-O(9) 89.885(8) O(11)-Zn(3)-O(12) 56.852(6)
    O(4)-Zn(2)-O(11) 92.882(6) O(11)-Zn(3)-N(3) 112.203(8)
    O(6)-Zn(2)-O(7) 83.958(8) O(12)-Zn(3)-N(3) 85.360(8)

    Table 12, Complex (4) bond distance
    Bonding atom Bond distance (Å)

    Zn(1)-O(3) 2.571(8)
    Zn(1)-O(4) 2.054(7)
    Zn(1)-O(5) 1.950(4)
    Zn(1)-O(8) 2.859(5)
    Zn(1)-N(2) 2.007(5)
    Zn(1)-N(8) 2.038(6)
    Zn(1)’-O(3) 2.571(8)
    Zn(1)’-O(4) 2.054(7)
    Zn(1)’-O(5) 1.950(4)
    Zn(1)’-O(8) 2.859(5)
    Zn(1)’-N(2) 2.007(5)
    Zn(1)’-N(8) 2.038(6)

    Table 13, Complex (4) bond angle
    Bonding atom bond angle (deg) Bonding atom bond angle (deg)
    O(3)-Zn(1)-O(4) 53.785(3) O(4)-Zn(1)-N(8) 92.266(3)
    O(3)-Zn(1)-O(5) 89.982(2) O(5)-Zn(1)-O(8) 51.018(1)
    O(3)-Zn(1)-O(8) 126.905(2) O(5)-Zn(1)-N(2) 116.055(2)
    O(3)-Zn(1)-N(2) 87.219(2) O(5)-Zn(1)-N(8) 110.752(2)
    O(3)-Zn(1)-N(8) 145.811(3) O(8)-Zn(1)-N(2) 82.122(2)
    O(4)-Zn(1)-O(5) 114.754(3) O(8)-Zn(1)-N(8) 86.639(2)
    O(4)-Zn(1)-O(8) 163.454(2) N(2)-Zn(1)-N(8) 106.023(2)
    O(4)-Zn(1)-N(2) 113.946(2)

    Table 22, Coordination modes in complex(1)、(8)
    [ Zn2(BAc)4 ]n-(1) [ Cd3(BAc)4(CH3OH)4 ]n-(8)
    bridging

    Bridging/chelating

    Table 23,Coordination modes in complex(4)、(7)
    [ Zn2(oTAC)4(pim)2 ]n-¬(4) [ Cd3(oTAC)6(pim)2 ]n-(7)
    monodentate

    bridging

    Bridging/chelating

    Table 24,Coordination modes in complex(3)、(6)
    [ Zn3(mTAC)6(mpz) ]n-(3) [ Cd3(mTAC)6(mpz)2 ]n-(6)

    bridging

    Bridging/chelating

    Table 25,Coordination modes in complex(2)、(5)
    [ Zn3(BAc)6(mpz)2 ]n-(2) [ Cd2(BAc)10(mpz)2 ]n-(5)
    bridging

    Bridging/chelating

    Table 26, Coordination numbers in metal and coordination modes
    Coordination number coordination mode
    Zn 4 (monodentate)
    5、6 (bridging) 、 (Bridging/chelating)
    Cd 6、7 (bridging) 、 (Bridging/chelating)

    CONCLUSION

    In this experiment, we obtained four new complexes.Complex (1)、(2)、(3) are one dimension coordination polymers, the complex (4) is a zero dimension structure. There are dinuclear and trinuclear existing in these complexes.

    目錄 摘要……………………………………………………………………………………I Abstract……………………………………………………………………………….II 致謝………………………………………………………………………………..…III 縮寫對照表…………………………………………………………………………XII 目錄……………………………………………………………………………XIII 表目錄…………………………………………………………………………XIV 附表目錄……………………………………………………………………………XV 圖目錄……………………………………………………………………………XVI 附圖目錄…………………………………………………………………………XIX 第一章 緒論……………………………………………………………………….1 1-1 引言………………………………………………………………….1 1-2 晶體工程(Crystal Engineering)……………………………………..2 1-3 金屬-有機配位高分子(metal-organic coordination polymer)……3 1-4 配位高分子的應用…………………………………………………4 1-5 文獻回顧……………………………………………………………5 1-6 實驗動機…………………………………………………………..44 第二章 實驗部分…………………………………………………………………45 2-1 實驗與儀器操作……………………………………………..….…45 2-2 實驗藥品……………………………………………….…………..47 2-3 實驗步驟………………………………………………….…….….48 第三章 結果與討論……………………………………………………….……...54 3-1 晶體結構……………………………………………….……….….54 3-2 Cd與Zn錯合物間金屬效應比較……………………….………..95 3-3 結構中苯甲酸根系列配位基與金屬間鍵結模式的比較………….97 3-4 反應機構…………………………………………………………….99 第四章 結論………………………………………………………………………102 參考文獻……………………………………………………………………………103 附錄…………………………………………………………………………………107 表目錄 表1-a Zn配位數與鋅-氧(Zn-O)之鍵長整理 (Monodentate)………………..7 表1-b Zn配位數與碳-氧(C-O)之鍵長整理 (Monodentate)…………………8 表2-a Zn配位數與鋅-氧(Zn-O)之鍵長整理 (Bridging)…………………..10 表2-b Zn配位數與碳-氧(C-O)之鍵長整理 (Bridging)……………………11 表3-a Zn配位數與鋅-氧(Zn-O)之鍵長整理 (Chelating)………………….12 表3-b Zn配位數與碳-氧(C-O)之鍵長整理 (Chelating)…………………..14 表4-a Zn配位數與鋅-氧(Zn-O)之鍵長整理 (Chelating/Bridging)………..16 表4-b Zn配位數與碳-氧(C-O)之鍵長整理 (Chelating/Bridging)…………17 表5 金屬鹽類起始物結構及縮寫……………………………….…………………50 表6 錯合物(1)之鍵長………………………………………………..…….……….56 表7 錯合物(1)之鍵角………………………………………………..…….……….57 表8 錯合物(2)之鍵長………………………………………………..………….….61 表9錯合物(2)之鍵角………………………………………………………….……62 表10 錯合物(3)之鍵長…………………………………………….………….…....68 表11 錯合物(3)之鍵角…………………………………………….………….……69 表12 錯合物(4)之鍵長…………………………………………….…………….…73 表13 錯合物(4)之鍵角…………………………………………….…………….…74 表14 錯合物(5)之鍵長…………………………………………….…………….…77 表15 錯合物(5)之鍵角…………………………………………….………….……79 表16 錯合物(6)之鍵長…………………………………………….………….……83 表17 錯合物(6)之鍵角………………………………………….…………….……83 表18 錯合物(7)之鍵長……………………………………………………………87 表19 錯合物(7)之鍵角……………………………………………………………88 表20 錯合物(8)之鍵長……………………………………………………………..93 表21 錯合物(8)之鍵角……………………………………………………………..94 表22 錯合物(1)與(8)苯甲酸根配位基與金屬間鍵結模式…….………....……….97 表23 錯合物(4)與(7)苯甲酸根系列配位基與金屬間鍵結模式……..…...….......98 表24 錯合物(3)與(6)苯甲酸根系列配位基與金屬間鍵結模式…….….……….98 表25 錯合物(2)與(5)苯甲酸根配位基與金屬間鍵結模式……………....…..…99 表26 表24 金屬配位數與酸根配位基整理……………………………..……..99 附表目錄 附表1 錯合物(1)晶體數據………………………………………………………107 附表2 錯合物(2)晶體數據………………………………………………………108 附表3 錯合物(3)晶體數據………………………………………………………109 附表4 錯合物(4)晶體數據………………………………………………………110 附表5 錯合物(5)晶體數據………………………………………………………111 附表6 錯合物(6)晶體數據………………………………………………………112 附表7 錯合物(7)晶體數據………………………………………………………113 附表8 錯合物(8)晶體數據………………………………………………………114 圖目錄 圖1 Zn2+金屬離子與不同的羧酸反應生成的三種不同高分子結構…………..6 圖2 帶三羧酸之苯甲酸與Zn反應產生之產物…………………………………6 圖3 部分構造圖…………………………………………………………………18 圖4 AZLOAD之零維結構……………………………….…………………….19 圖5 KEHTEY -1之零維結構圖……..…………………………………………19 圖 6 KIDWUQ之零維結構圖………………………………………………….....20 圖 7 NELBOX之零維結構圖.……………………………………………………20 圖 8 PASCOC之零維結構圖………………………………………………..……21 圖 9 RAFUIJ之零維結構圖………………………………………………………21 圖10 REHDIS之零維結構圖……….….…………………………………………22 圖11 FIFXAU之結構圖………………………………….……………………….23 圖12 FIFXAU之一維結構延展圖…………………..……………………………23 圖13 HOPVAK -1之結構圖……………………………………….…………...…24 圖14 HOPVAK -1之一維結構延展圖…………..……………………….……….24 圖15 LEPXOV -1之結構圖……………………………………………….………25 圖16 LEPXOV -1之一維結構延展圖……………….……………………………25 圖17 LOLGAW之結構圖…………………………………………………………26 圖18 LOLGAW之一維結構延展圖….…………………………………………..27 圖19 TAWTIW-1之結構圖……….…………………………………………...…..27 圖20 TAWTIW-1之一維結構延展圖………………………………………..……28 圖21 IZASIL之零維結構圖………………………………………………………28 圖22 NOCHUE01之零維結構圖.…..…………………………………….………29 圖23 NOQNOX之零維結構圖……………………………………………………29 圖24 ROJVIW之零維結構圖…….…………………………………………...…..30 圖25 VUPQIH-1之零維結構圖……………………………..…………………....31 圖26 DAXNEW之結構圖…………….……………………………………….….32 圖27 DAXNEW之一維結構圖……….………………………………………..…32 圖28 EDUNOH之結構圖…………………………………………………………33 圖29 EDUNOH之一維結構延展圖…………………………………………..…..33 圖30 ETUMEM之結構圖…………………………………………………….…..34 圖31 ETUMEM之一維結構延展圖…….………………………………..……….34 圖32 EXOEUM之結構圖………….………………………………………..…….35 圖33 EXOEUM之一維結構延展圖…………………………………………...….35 圖34 GETZOV之結構圖…….……………………………………………...…….36 圖35 GETZOV之一維結構延展圖.………………………………………………36 圖36 IDAWOA之結構圖…..…………………………………………………..….37 圖37 IDAWOA之一維結構延展圖…………………………………..…………..37 圖38 MEQBIU之結構圖…………………………………………...……………..38 圖39 MEQBIU之一維結構延展圖……………………………………………….38 圖40 OGOVUC-1之結構圖………………………………………………...…….39 圖41 OGOVUC-1之一維結構延展圖…………………………………..………..39 圖42 OSAWOV之結構圖……………………………………………………..…..40 圖43 OSAWOV之一維結構延展圖………………………………………………40 圖44 QULLIT之結構圖………………………………………………………..…41 圖45 QULLIT之一維結構延展圖………………………………………………..41 圖46 SASHAW之結構圖……………….…………………………………..…….42 圖47 SASHAW之一維結構延展圖………………………………………………42 圖48 VISBAC之結構圖…………………………………………………….…….43 圖49 VISBAC之一維結構延展圖……………………………………..…………43 圖50 有機配位基合成示意圖………………………………………………...…..48 圖51 有機配位基合成示意圖………………………………………………..…...49 圖52 光譜鑑定mpz的1H編號………………………………………………...….49 圖53 光譜鑑定pim的1H編號…………………………………………………….50 圖54 金屬鹽類起始物合成示意圖……………………………………………….51 圖55 金屬鹽類起始物合成示意圖……………………………………………….51 圖56 金屬鹽類起始物合成示意圖……………………………………...………..54 圖57 金屬鹽類起始物合成示意圖………………………………………...……..54 圖58 錯合物(1)一維結構示意圖…………………………………………...……..57 圖59 錯合物(1)晶體結構…………………………………………………..……...55 圖60 Bridging鍵結模式………………………………………………...…………56 圖61 Bridging鍵結模式…………...………………………………………………56 圖62 錯合物(2)一維結構示意圖………………………………………………….58 圖63 錯合物(2)晶體結構………………………………………………………….60 圖64 Bridging鍵結模式…………………………………………………..…….…61 圖65 Chelating/Bridging鍵結模式……………………………………….…….…61 圖66 錯合物(3)一維結構示意圖…………………………………………….……64 圖67 錯合物(3)晶體結構……………………………………………………….…66 圖68 bridging鍵結模式………………………………………………………...…67 圖69 chelating/bridging鍵結模式…………………………………………………67 圖70 錯合物(4)晶體結構……………………………………………………….…70 圖71 錯合物(4)晶體結構…………………………………………………….……71 圖72 monodentate鍵結模式………………………………………………………72 圖73 錯合物(4)孔洞示意圖……………………………………………….………72 圖74 錯合物(5)一維結構示意圖………………………………………………….75 圖75 錯合物(5)晶體結構…………………………………...…………………….76 圖76 錯合物(5)晶體結構 (將酸根之苯環省略)…………………………..……..76 圖77 Bridging鍵結模式…………………………………...…………………...…77 圖78 chelating/bridging鍵結模式………………………………………..……….77 圖79 錯合物(6)一維結構示意圖………………………………………………….80 圖80 錯合物(6)晶體結構………………………………………………………….81 圖81 Bridging鍵結模式……….…………………………………………….……82 圖82 chelating/bridging鍵結模式………………...…………….………………...82 圖83 錯合物(6)晶體結構(將酸根苯環省略)….…...……………………..………82 圖84 錯合物(7)一維結構示意圖………………………………………….………84 圖85 錯合物(7)晶體結構………………………………………………………….85 圖86 錯合物(7)單晶結構圖(省略酸根之苯環)…………………..………………86 圖87 Bridging鍵結模式………………………………………………………...…86 圖88 chelating/bridging鍵結模式…………………………………………...…….86 圖89 錯合物(8)一維結構示意圖………..…………………………………......….89 圖90 錯合物(8)單晶結構………………………………………………...………..90 圖91 錯合物(8)鏈狀結構(省略酸根之苯環)……………………………………..91 圖92 Bridging鍵結模式…………………………………………………….……..92 圖93 chelating/bridging鍵結模式………………………………………….…..…92 圖94 錯合物(2)之反應構造圖………………………………………………….…99 圖95 錯合物(1)之鍊狀結構簡化圖…………………………………………….…99 圖96 含氮配位基mpz簡化圖……………………………………………….……99 圖97 步驟一反應機構圖…………………………………………………….…..100 圖98 步驟二反應機構圖…………………………………………………….…..100 圖99 步驟一反應機構圖………………………………………………………...101 圖100 錯合物(2)結構生成示意圖…………………………………………….…101 附圖目錄 附圖1錯合物(1)的液態H-NMR…………………………………………………115 附圖2錯合物(2)的液態H-NMR圖………………………………………………115 附圖3錯合物(3)的液態H-NMR圖………………………………………………116 附圖4錯合物(4)的液態H-NMR圖………………………………………………116 附圖5配位基mpz的液態H-NMR圖……………………………………………117 附圖6配位基pim的液態H-NMR圖……………………………………………117 附圖7 Zn(oTAC)2的液態H-NMR圖……..….….………………………………118 附圖8 Zn(mTAC)2的液態H-NMR圖……………………………………………118 附圖9錯合物(2)的UV-VIS吸收光譜圖…………………………………………119 附圖10錯合物(3)的UV-VIS吸收光譜圖……….……………………………….119 附圖11錯合物(4)的UV-VIS吸收光譜圖….…………………………………….120 附圖12錯合物(2)的螢光放光光譜圖…………….……………………………….120 附圖13錯合物(3)的螢光放光光譜圖……………………………………….…….121 附圖14錯合物(4)的螢光放光光譜圖……………………………………….…….121

    1. R. A. Heintz, H. H. Zhao, O. Y. Xiang, G. Grandinetti, J. Cowen, K. R. Dunbar, Inorg. Chem. 1999, 38, 144-144.
    2. S. Han, J. L. Manson, J. Kim, J. S. Miller, Inorg. Chem. 2000, 39, 4182-4182.
    3. K. Ingo, J. S. Timothy, A. B. Elizabeth, J. P. Cassie, O. L. Paraskevi, H. B. Wesley, K. T. Michael, W. Christian, H. Nilay, S. Sven, Inorg. Chem. 2014, 53, 2133-2143.
    4. B. F. Hoskins, R. Robson, J. Am. Chem. Soc. 1990, 112, 1546-1546.
    5. P. Losier, M. J. Zaworotko, Angew. Chem. , Int, Ed. 1996, 35, 2779-2782.
    6. H. Li, M. Eddaoudi, T. L. Groy, O. M. Yaghi, J. Am. Chem. Soc. 1998, 120, 8571-8572.
    7. M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Angew. Chem., Int. Ed.1997, 119, 4117-4117.
    8. K. Endo, T. Koike, T. Sawaki, O. Hayashida, H. Masuda, Y. Aoyama, J. Am. Chem. Soc. 1997, 119, 4117-4122.
    9. T. Sawaki, T. Dewa, Y. Aoyama, J. Am. Chem. Soc. 1998, 120, 8539-8540.
    10. J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature, 2000, 404, 382-385.
    11. O. M. Yaghi, G. M. Li, H. L. Li, Nature, 1995, 378, 703-706.
    12. O. M. Yaghi, H. L. Li, T. L. Groy, J. Am. Chem. Soc. 1996, 118, 9096-9101.
    13. Z. M. Wang, S. Tezuka, H. Kanoh, Chem. Mater. 2001, 13, 530-537.
    14. K. Biradha, D. Dennis, V. A. MacKinnon, C. V. K. Sharma, M. J. Zaworotko, J. Am. Chem. Soc. 1998, 120, 11894-11903.
    15. H. J. Choi, M. P. Suh, J. Am. Chem. Soc. 1998, 120, 10622-10628.
    16. H. Li, M. Eddaoudi, J. Plevert, M. O’Keeffe, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 12409-12410.
    17. B. L. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 11559-11560.
    18. M. Eddaoudi, H. L. Li, O. M. Yaghi, J. Am. Chem. Soc. 2000, 122, 1391-1397.
    19. H. Kumagai, Y. Oka, M. Akita-Tanaka, K. Inoue, Inorg. Chim. Acta, 2002, 332, 176-180.
    20. A. M. Beatty, Crystengcomm, 2001, 243-255.
    21. A. Nangia, Curr. Opin. Solid State Mater. Sci. 2001, 5, 115-122.
    22. M. Adokoro, T. Shiomi, K. Nakasuji, Inorg. Chem. 2001, 40, 5467-5482.
    23. T. J. Prior, M. J. Rosseinsky, J. Am. Chem. Soc. Comm. 1972, 4, 225-226.
    24. B. F. Hoskins, R. Robson, D. A. Slizys, J. Am. Chem. Soc. 1997, 119, 2952-2953.
    25. M. Fujita, J. Yazaki, K. Ogura, J. Am. Chem. Soc. 1990, 112, 5645-5647.
    26. H. Li, M. Eddaoudi, M. O’Keeffe, O. M. Yaghi, Nature, 1999, 402, 276-279.
    27. F. T. Zheng, J. Lin, Y. Su, L. Wen, Y. Liu, H. Zhu, Q.-J. Meng, Cryst. Growth Des. 2007, 7, 1863-1867.
    28. A. Schaate, S. Klingelhöfer, P. Behrens, M. Wiebcke, Cryst. Growth Des. 2008, 8, 3200-3205.
    29. X.-Z. Song, S.-Y. Song, C. Qin, S.-Q. Su, S.-N. Zhao, M. Zhu, Cryst. Growth Des. 2012, 12, 253-263.
    30. W. Liu, J. Yu, J. Jiang, L. Yuan, B. Xu, Q. Liu, B. Qu, G. Zhang, CrystEngComm, 2011, 13, 2764-2773.
    31. X. Li, R. Cao, D. Sun, W. Bi, Y. Wang, X. Li, M. Hong, Cryst. Growth Des. 2004, 4, 775-780.
    32. M.L. Huang, L.-L. Wang, Acta Cryst. 2011. E67, 1470-1470.
    33. N. N. LI, Y. H. Zhang, M. L. Zhang, Synth.React.Inorg.,Met.-Org.,Nano-Met.Chem. 2015, 45, 298-303.
    34. T. Shi, ,W. Sun,W. Zhao, H. Wu,J. Qu, S. Diwu, X. Yang , Z. Anorg. Allg. Chem. 2014, 640, 2477-2483.
    35. L. Wen, Y. Li, D. Dang, Z. Tian, Z. Ni, Q. Meng, J. Solid State Chem. 2005, 178,3336-3341.
    36. Y. Y. Liu, Y. Y. Jiang, J. Yang, Y. Y. Liu, J. F. Ma, CrystEngComm. 2011, 13, 6118-6129.
    37. X. M. Li,Y. H. Dong, Q. W. Wang , B. Liuc, Acta Cryst. 2007, E63, 1839–1840
    38. S.Y. Liu, L. Tian, Acta Cryst. 2011, E67, 950-951.
    39. X. Y. Cao, J. Zhang, Y. Kang, J. K. Cheng, Z. J. Li, X. Q. Wang, Y. H. Wen ,Y. G. Yao, Acta Cryst. 2004, C60, 350-352.
    40. Y. Y. Liu, J. Li, J. F. Ma, J. C. Ma ,J. Yang, CrystEngComm. 2012, 14, 169-177.
    41. R. Wang, F. Jiang, Y. Zhou, L. Han, M. Hong, Inorg. Chim. Acta. 2005, 385, 545-554.
    42. C. B. Li, W. Fang, E.J. Dong, B. Liu, Y. W. Li, Acta Cryst. 2007, E63, 150-152.
    43. Y. Y. Liu, J. F. Ma, J. Yang, Z. M. Su, Inorg. Chem. 2007, 46, 3027-3037.
    44. Han Kwak , S. H. Lee , S. H. Kim , Y. M. Lee , Byeong Kwon Park , Y. J. Lee , J. Y. Jun , Cheal Kim , S. J. Kim , Youngmee Kim , Polyhedron 28, 2009, 553-561.
    45. Z. H. Li, W. J. Ao, X. X. Wang ,X. Z. Fu, Acta Cryst. 2006, E62, 1048-1050.
    46. E. Tang, Y. M. Dai,S. Lin, Acta Cryst,, 2004, C60, 433-434.
    47. Y. F. Zhou, Y. J. Zhao, D. f. Sun, J. B. Weng, R. Cao, M. C. Hong, Polyhedron 2003, 22, 1231-1235.
    48. D. P. Martin, M. A. Braverman , R. L. LaDuca, Cryst,. Growth Des. 2007, 7, 2609-2619.
    49. A. Tarushi, X. Totta, C. P. Raptopoulou, V. Psycharis, G. P. D. P. Kessissoglou ,Dalton Trans. 2012, 41, 7082-7091.
    50. G. Yin , Y. Zhang , B. Li , Y. Zhang, J Mol Struct. 2007 ,837, 263-268.
    51. N. Sikdar, A. Hazra, T. K. Maji, Inorg. Chem. 2014, 53, 5993-6002.
    52. X. He, C. Z. Lu, D. Q. Yuan, L. J. Chen,Q. Z. Zhang, C. D. Wu, Eur. J. Inorg. Chem. 2005, 4598-4606.
    53. N. Phukan, J. B. Baruah, RSC Adv., 2013, 3, 1151-1157.
    54. S. Banerjee, P. Rajakannu, R. J. Butcher, R. Murugavel, CrystEngComm. 2014, 16, 8429-8441.
    55. C.-B. Li, Y.-W. Li, W. Fang, B. Liu and D.-Q. Li, Acta Cryst. 2006. E62, 3541-3543.
    56. H. Sato, R. Matsuda, M. H. Mir, S. Kitagawa,Chem. Commun. 2012, 48, 7919-7921.
    57. M. A. Hasan, N. Kumari, P. Kumar, B. Pathak, L. Mishra,Polyhedron. 2013, 50, 306-313.
    58. L. Yan, Y. Xiao, C. Li, M. Liu,W. Li, N. Yang,Synth.React.Inorg.,Met.-Org.,Nano-Met.Chem.2014,44,829-835.
    59. L.-J. Chen, S. Lin, M.-X. Yang, X.-Y. Wu,Acta Cryst. 2009. E65, 413-414.
    60. F. Dai, H. He, D. Gao, F. Ye, D. Sun , Z. Pang, L. Zhang, G. Dong, C.Zhang, Inorg. Chim. Acta. 2009,362, 3987-3992.
    61. H.-D. Guo, D.-F. Qiu, X.-M. Guo, G.-L. Zheng, X. Wang, S. Dang, H.-J. Zhang, CrystEngComm, 2009, 11, 2425-2430.
    62. S.Bhattacharya, U.Sanyal, S.Natarajan, Cryst.Growth Des. 2011, 11, 735-747.
    63. Y. Wang, N. Okabe,Inorganica Chimica Acta. 2005, 358, 3407-3416.
    64. H. J. Park, M. P. Suh, Chem.Commun. 2010, 46, 610-612.
    65. S. Sen, S.Neogi, A.Aijaz, Qiang Xu, P.K.Bharadwaj, Inorg.Chem. 2014, 53, 7591-7598.
    66. X.-Y. Cao, Y.-G. Yao, Y.-Y. Qin, Q.-P. Lin, Z.-J. Li, J.-K. Cheng, R.-B. Zhang,CrystEngComm. 2009, 11, 1815-1818.
    67. Y.-P. Wu, D.-S. Li, F. Fu, W.-W. Dong, G.-P. Yang, Y.-Y. Wang, Q.-Z. Shi, Polyhedron. 2012, 31, 188-195.
    68. X.-C. Fu, X.-Y. Wang, M.-T. Li, C.-G. Wang, Acta Cryst. 2006, E62, 773-775.
    69. X. He, X.-P. Lu, Z.-F. Ju, C.-J. Li, Q.-K. Zhang, M. X. Li, CrystEngComm. 2013, 15, 2731-2744.
    70. Z.-X. Han, J.-J. Wang, H.-M. Hu, X.-L. Chen, Q.-R. Wu, D.-S. Li, Q.-Z. Shi, J. Mol Struct. 2008, 891, 364-369.
    71. B. Gole, U. Sanyal, P. S. Mukherjee, Chem. Commun. 2015, 51, 4872-4875.
    72. C. Qin, X. Wang, E. Wang, Y. Qi, H. Jin, S. Chang, L. Xu, J. Mol. Struct. 2005,749, 138-143.
    73. H.-L. Zhu, J.-L. Lin, W. Xu, J. Zhang, Y.-Q. Zheng, J. Coord. Chem. 2011, 64, 2088-2100.
    74. L. Wang, Q.-K. Liu, J.-P. Ma, Y.-B. Dong, J. Mol. Struct. 2015,1084, 1-8.
    75. M. Du, X.-J. Jiang, X.-J. Zhao, Inorg. Chem. 2007, 46, 3984-3995.
    76. X. Guo, H. Guo, H. Zou, Y. Qi, R. Chen,CrystEngComm. 2013, 15, 9112-9120.
    77. F. Gandara, M. E. Medina, N. Snejko, E. G.-P., D. M. Proserpio, M. A. Monge, CrystEngComm. 2010, 12, 711-719.
    78. Z.-H. Zhang, S.-C. Chen, J.-L. Mi, M.-Y. He, Q. Chen, M. Du, Chem. Commun. 2010, 46, 8427-8429.
    79. A. Aijaz, P. Lama, P. K. Bharadwaj, Eur. J. Inorg. Chem. 2010, 3829-3834.
    80. J.-Fu Lu, L.-J. Qiao, L.-Q. Li, Z.-H. Liu, J. Mol. Struct. 2015, 1081, 79-84.
    81. S. Wang, R. Yun, Y. Peng, Q. Zhang, J. Lu,J. Dou, J. Bai,Cryst. Growth Des. 2012, 12, 79-92.
    82. H. Sato, R. Matsuda, K. Sugimoto, M. Takata, S. Kitagawa, Nat. Mater. 2010, 9, 661-666.
    83. X.-Y. Hou, X. Wang, F. Fu, J.-J. Wang, L. Tang, J. Coord. Chem. 2013, 66, 3126-3136.
    84. T. Li, L.-R. Tang, Lin Yang, B. Huang, Acta Cryst. 2011. E67, 1262-1262.
    85. H. Necefoglu, W. Clegg, A. J. Scott, Acta Cryst. 2001. E57, 472-474.
    86. T. H.¨kelek, N. C¸aylak, H. lu, Acta Cryst. 2008. E64, 458-459.
    87. S. Jin, H. Liu, G. Chen, Z. An, Y. Lou, K. Huang, D. Wang, Polyhedron. 2015. 95, 91-107.
    88. J.-J. Wang,C.-S. Liu, T.-L. Hu, Z. Chang, C.-Y. Li, L.-F. Yan, P.-Q. Chen,
    X.-H. Bu, Q. Wu, L.-J. Zhao, Z. Wang, X.-Z. Zhang, CrystEngComm. 2008. 10, 681-692.
    89. D. Li, Acta Cryst. 2012. E68, 1462-1462.
    90. J. G. Zhao, S. Gao, L. H. Huo, S. W. Ng, Acta Cryst. 2005. E61, 115-116.
    91. B. Liu, Q. Xu, Acta Cryst. 2009. E65, 509-509.
    92. C.-Y. Shi, Z.-H. Wu, A.-B. Shen, J.-M. Wu, Synth. React. Inorg. Met.-Org. Chem. 2015. 45, 648-650.
    93. Q.-B. Bo, Z.-W. Zhang, J.-L. Miao, D.-Q. Wang, G.-X. Sun, CrystEngComm, 2011, 13, 1765-1767.
    94. J. Yang, J. F. Ma, Y. Y. Liu, S. L. Li, G. L. Zheng, Eur. J. Inorg. Chem. 2005, 2174-2180.
    95. C. M. Hartshorn, P. J. Steel, Aust. J. Chem. 1995, 48, 1587-1599.
    96. 王期麟, 國立成功大學碩士論文, 2011年

    下載圖示 校內:2021-02-04公開
    校外:2021-02-04公開
    QR CODE