| 研究生: |
林群傑 Lin, Qun-Jie |
|---|---|
| 論文名稱: |
結合無線傳能與模糊控制之微型腫瘤熱燒灼針系統 Integration of Wireless Power Transfer and Fuzzy Control in a Miniaturized Tumor Ablation Needle System |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 無線傳能 、模糊控制 、溫度控制 、腫瘤熱燒灼系統 |
| 外文關鍵詞: | Wireless Power Transmission, Fuzzy Control System, Temperature Control, Tumor Thermal Ablation System |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤為全球主要死因之一,其治療方式除傳統手術、化療與放療外,熱燒灼療法因具備微創、傷口小與復原期短等優勢,近年逐漸受到重視。腫瘤細胞對高溫較為敏感,當局部組織溫度超過42°C,即可有效誘導腫瘤細胞凋亡,達到治療效果。然而現有熱療系統常面臨設備體積龐大、能量供應受限與溫控穩定性不足等挑戰,限制其於可攜式與精準治療場域之應用。本研究提出一套基於模糊控制與無線傳能之手持式腫瘤熱燒灼系統,整合無線傳能模組、微控制器(NUVOTON M482)、K型熱電偶感測元件與限流電路,搭配Mamdani型模糊控制器進行溫度閉迴路控制。控制邏輯以溫度誤差與變化率作為輸入,輸出PWM信號動態調整加熱功率,強化系統於不同加熱條件下之穩態響應。系統經空針測試與豬肝組織實驗驗證,能於50°C至70°C操作範圍內穩定運行,平均穩態誤差控制於±2°C,燒灼區域具一致性且溫控反應迅速。整體系統具備體積小、功耗低與溫控準確等特性,未來可應用於床邊熱療或植入型治療裝置,為臨床腫瘤熱療提供一項具可行性與發展潛力之微型熱療平台。
Cancer is one of the major causes of death in the world. Thermal cauterization has gradually has gained attention in recent years due to its advantages of minimally invasiveness and short recovery time. Cancer cells are sensitive to high temperatures, and when the local tissue temperature exceeds 42 °C, apoptosis can be induced. However, the existing thermal therapy systems often face challenges such as large size of equipment, limited energy supply, and lack of stability in temperature control, which limit their application in portable and precise treatment fields. In this study, we propose a Integration of Wireless Power and Fuzzy Control in a Miniaturized Tumor Ablation Needle System, which integrates a wireless power supply module, a microcontroller (NUVOTON M482), a K-type thermocouple sensing element, and a current limiting circuit with a Mamdani type fuzzy controller for closed-loop temperature control. The control logic takes the temperature error and rate of change as inputs and outputs a PWM signal to dynamically adjust the heating power to enhance the system's stable response under different heating conditions. The system has been verified by a pig liver tissue experiment, and it can operate stably within the operating range of 50 °C to 70 °C. The average stability error is controlled within ±2 °C, and there is consistency in the cauterization area with rapid temperature control response. The overall system has the characteristics of small size, low power consumption and accurate temperature control, which can be applied to bedside thermal therapy or implantable therapy devices in the future, providing a miniature thermal therapy platform with feasibility and development potential for clinical tumor thermal therapy.
1. X. Yang, J. Du, and Y. Liu, “Advances in hyperthermia technology,” Proceedings of the IEEE, Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005.
2. G. Ma, and G. Jiang, “Review of tumor hyperthermia technique in biomedical engineering frontier,” 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI), IEEE, pp. 1357–1359, 2010.
3. Z. Muhammad, Z. M. Yusoff, M. H. F. Rahiman, M. N. Taib, “Design and implementation of fuzzy logic controller for induction based Steam Distillation System,” IEEE 10th International Colloquium on Signal Processing & Its Applications, 2014.
4. Z. Zheng, W. Guocheng and L. Xiaowei, “An Intelligent Monitoring System of Medium-Frequency Induction Furnace Based on Fuzzy Control,”International Conference on Intelligent System Design and Engineering Application, 2010.
5. C. Deng and Z. Wang, “Self-Learning Fuzzy Algorithm Optimized Temperature Control and Efficiency Monitoring of Heat Exchanger,” 2018 37th Chinese Control Conference (CCC), Wuhan, China, pp. 3394–3399, 2018.
6. 吳明璋, “大功率電磁熱療系統之數位回授溫度控制,” 碩士論文, 電機工程學系, 國立成功大學, 台南市, 2012。
7. 洪建智, “應用田口法與基因演算法於電磁熱療軟性線圈優化設計,” 碩士論文, 電機工程學系, 國立成功大學, 台南市, 2018。
8. 黃彥誠, “輸出融合模糊控制器應用於無線傳能腫瘤熱燒灼系統,” 碩士論文, 電機工程學系, 國立成功大學, 台南市, 2022。
9. 吳俊宜, “微型無線傳能腫瘤熱燒灼電熱針系統,” 碩士論文, 電機工程學系, 國立成功大學, 台南市, 2023.
10. Yik-Kiong Hue, Alexander R. Guimaraes, Ouri Cohen, Erez Nevo, Abraham Roth, and Jerome L. Ackerman, “Magnetic Resonance Mediated Radiofrequency Ablation” IEEE Transactions on Medical Imaging,Volume: 37, Issue: 2, February 2018.
11. K. Y. Yoneda, F. Herth, T. Spangler, S. Raina, and D. Panescu, ” Long-term Survival Results following Endobronchial RF Ablation in a Healthy-Porcine Model” 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 27 August 2020.
12. P. Saccomandi, E. Schena, F. M. Di Matteo, M. Pandolfi, M. Martino, R. Rea, and S. Silvestri, “Laser Interstitial Thermotherapy for pancreatic tumor ablation: Theoretical model and experimental validation” 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
13. Paola Saccomandi, Emiliano Schena, Michele Arturo Caponero, Francesco Maria Di Matteo, Margareth Martino,and Monica Pandolfi, ” Theoretical Analysis and Experimental Evaluation of Laser-Induced Interstitial Thermotherapy in Ex Vivo Porcine Pancreas” IEEE Transactions on Biomedical Engineering, Volume: 59, Issue: 10, October 2012.
14. Nickolas D. Polychronopoulos, Apostolos A. Gkountas, Ioannis E. Sarris, and Leonidas A. Spyrou, “Numerical Analysis of Temperature Distribution in Ellipsoidal Tumors in Magnetic Fluid Hyperthermia” 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE).
15. Yun-dong Tang, Rodolfo C. C. Flesch, and Tao Jin, “Injection Strategy for the Optimization of Therapeutic Temperature Profile Considering Irregular Tumors in Magnetic Hyperthermia” IEEE Transactions on Magnetics, Volume: 54, Issue: 6, June 2018.
16. Matteo Bruno Lodi,” Effects of the Inhomogeneous Loading of Magnetic Nanoparticles in Thermoseeds for Bone Tumors Hyperthermia” ,2022 3rd URSI Atlantic and Asia Pacific Radio Science Meeting (AT-AP-RASC).
17. Matteo Bruno Lodi, “Recent Advances and Challenges of Magnetic Scaffolds for Tumor Hyperthermia and Tissue Engineering” 2022 IEEE 22nd International Conference on Nanotechnology (NANO).
18. J. W. Strohbehn, and E. B. Douple, "Hyperthermia and cancer therapy: A review of biomedical engineering contributions and challenges," IEEE Trans. Biomed. Eng., BME-31, pp. 779-787, Dec. 1984.
19. R. Zuchini, H. W. Tsai, C. Y. Chen, C. H. Huang, S. C. Huang, G. B. Lee, C. F. Huang, X. Z. Lin, "Electromagnetic thermotherapy using fine needles for hepatoma treatment," Eur. J Surg. Oncology, vol. 37, pp. 604-610, Apr. 2011.
20. A. Kuperman, “Simple Enhancement of Series–Series-Compensated Inductive Wireless Power Transfer Links Operating With Load-Independent Voltage Output at Fixed Frequency to Attain Zero Inverter Phase Angle,” IEEE Transactions on Power Electronics, vol. 38, no. 5, pp. 5670–5674, May 2023.
21. R. K. Yakala, D. Nayak, and S. Pramanick, “Analytical Evaluation of Loss Reduction With ZPA Over Full ZVS Operation for Bidirectional WPT System,” IEEE Transactions on Transportation Electrification, vol. 11, no. 2, pp. 5927–5937, Apr. 2025.
22. C. C. Chen, C. C. Tai, S. J. Huang, Y. H. Chen, C. H. Lin, "Thermotherapy induction heating apparatus with new magnetic-wrapped coil design," IEEE. Trans. Inst. Elect., vol. 61, no.5, May 2014.
23. S. C. Huang, Y. Y. Chang, Y. J. Chao, Y. S. Shan, X. Z. Lin, G. B. Lee, "Dual-row needle arrays under an electromagnetic thermotherapy system for bloodless liver resection surgery," IEEE Trans. Bio. Eng., vol. 59, no. 3, March 2012.
24. I. Lope, J. Acero, C. Carretero, "Analysis and optimization of the efficiency of induction heating applications with Litz-wire planar and solenoidal coils," IEEE Trans. on Power Elect., vol. 31, no. 7, pp. 5089-5101, July 2016.
25. C. Li, Y. Zhou, P. Wang, X. Wang, S. Dong, J. Du, Z. Liao, C. Yao, J. Tan, Y. Mi, "Design and experiments of electromagnetic heating forming technology," IEEE Access., vol. 7, May 2019.
26. W. Han, K. T. Chau, Z. Zhang, and C. Jiang, " Single-source multiple-coil homogeneous induction heating," IEEE Trans. on Magn., vol. 53, no. 11, Nov. 2017.
27. C. C. Tai, C. C. Chen, C. C. Kuo, F. W. Lin, C. J. Chang, Y. H. Chen, W. C. Wang, "Deep-magnetic-field generator using flexible laminated copper for thermotherapy applications," IEEE Trans. on Magn., vol. 50, no. 11, Nov. 2014.
28. Z. He, X. Liu, and H. Sun, “Design of Constant Temperature Building Heating System Based on Fuzzy Adaptive PID Control,” 2021 40th Chinese Control Conference (CCC), Shanghai, China, pp. 2226–2232, 2021.
29. J. -W. Wang, J. -F. Zhang, and H. -N. Wu, “Boundary Fuzzy Output Tracking Control of Nonlinear Parabolic Infinite-Dimensional Dynamic Systems: Application to Cooling Process in Hot Strip Mills,” IEEE Transactions on Fuzzy Systems, vol. 31, no. 5, pp. 1460–1473, May 2023.
校內:2030-08-18公開