| 研究生: |
許騰元 Xu, Teng-Yuan |
|---|---|
| 論文名稱: |
考量淹水歷程之道路疏散避難服務水準評估研究—以急水溪流域為例 Assessment of Road-Network Evacuation Service Levels Considering Flooding Processes: A Case Study of Jishui River Watershed |
| 指導教授: |
曾志民
Tseng, Chih-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 自然災害減災及管理國際碩士學位學程 International Master Program on Natural Hazards Mitigation and Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 淹水避難 、道路可通行性 、災害風險評估 、避難啟動時機 、SOBEK 水文水理模擬 、地理資訊系統 |
| 外文關鍵詞: | Flood evacuation, Road accessibility, Disaster risk assessment, Evacuation timing, SOBEK hydrodynamic modeling, Geographic Information Systems |
| ORCID: | 0009-0005-2708-4827 |
| ResearchGate: | https://www.researchgate.net/profile/Teng-Yuan-Xu |
| 相關次數: | 點閱:6704 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣因地處亞熱帶季風區及位於板塊交界地帶,地形起伏大、降雨時空分布不均,致使淹水災害頻仍,特別在氣候變遷下,極端降雨事件更具強度與頻率,對都市排水與交通通行構成重大挑戰。近年重大水患事件中,道路通行中斷與居民避難困難屢見不鮮,反映傳統依據靜態最大淹水圖為基礎之避難規劃難以應對實際洪水動態。本研究旨在建構一套結合淹水歷程與道路通行性之疏散評估流程,針對災時避難服務水準進行量化分析,並以臺南市急水溪流域為例,提出具實務性與時間歷程之分群避難策略。本研究首先以SOBEK水文水理模式進行洪水模擬,設定短延時(200 mm/3 hr)與長延時(350與500 mm/24 hr)三組降雨情境,取得各時間點之水深分布。再者,透過ArcGIS Pro及Python模組處理淹水結果與道路路網資料,依路寬與水深資訊建立「道路淹水影響等級」(Road Flood Impact Level),評估各時點道路可通行性。於避難需求分析方面,本研究考量建物樓層與水深,篩選出具撤離需求之保全對象,並利用Closest Facility與Connected Component等演算法分析其可行避難路徑,進一步將保全對象依路徑重疊比例進行分群,依所經路段淹水程度判定其「提前避難」、「災前避難」與「標準避難」等啟動時機。研究結果顯示,急水溪流域中下游平原地區之主要道路於洪水期間通行性下降,次要道路則成為災時的替代道路。在短延時降雨情境下,需進行災前避難的對象相較於長延時降雨情境顯著增加,標準避難對象則有減少趨勢,顯示短延時強降雨對於道路通行會帶來較大的衝擊,加速提前避難的時機。本研究方法經柳營與學甲地區測試驗證,結果符合實務應用與具操作可行性,亦具有應用於其他都市及流域地區之潛力。
綜合而言,本研究貢獻如下:(1) 建立一套動態淹水與道路通行性整合評估架構,補足靜態淹水潛勢圖之侷限;(2) 發展可操作化的通行風險指標(Road Flood Impact Level),並具時間歷程特性;(3) 引入建物特徵與避難分群策略,提升避難需求評估之精度與實務性;(4) 提出具階段性之避難啟動時程建議,強化地方政府與社區組織應變規劃依據。未來建議將本評估成果與即時災害資訊整合進入數位通訊系統,以提升避難資訊普及率;並於實務應用中納入行動不便者與高齡族群等保全對象與社會面參數,增進評估結果之全面性與社會包容性。
Taiwan is situated in a subtropical monsoon region and located at the junction of tectonic plates. Its complex topography and uneven spatiotemporal distribution of rainfall result in frequent flooding disasters. In particular, under the influence of climate change, extreme rainfall events have become increasingly intense and frequent, posing significant challenges to urban drainage systems and road accessibility. In recent years, severe flood events have often caused road blockages and difficulties in resident evacuation, revealing the inadequacy of traditional evacuation planning based on static maximum flood potential maps in addressing the dynamic nature of real flood processes. This study aims to develop an evacuation assessment framework that integrates flooding processes and road accessibility, conducting quantitative analyses of evacuation service levels during disasters. Using the Jishui River watershed in Tainan City as a case study, the research proposes a practical and time-based group evacuation strategy. The study first applies the SOBEK hydrologic-hydraulic model to simulate flood scenarios under three rainfall conditions: short-duration (200 mm/3 hr) and long-duration (350 mm and 500 mm/24 hr). Water depth distributions at different time intervals are obtained accordingly. Furthermore, flood simulation results and road-network data are processed using ArcGIS Pro and Python modules to establish a “Road Flood Impact Level” based on road width and water depth, which is used to evaluate road accessibility at each time point. In terms of evacuation demand analysis, the study considers building height and water depth to identify protected objects requiring evacuation. Using network analyses and algorithms such as Closest Facility and Connected Component, feasible evacuation routes are identified. These protected objects are subsequently grouped based on route overlap ratio, and their evacuation timing is determined according to the flooding severity along the evacuation routes, categorized into “Early evacuation,” “Pre-event evacuation,” and “Standard evacuation.” The results indicate that during flood events, the main roads in the midstream and downstream plains of the Jishui River watershed experience reduced accessibility, while secondary roads become critical alternative routes. Under short-duration rainfall scenarios, a greater number of protected objects require pre-event evacuation compared to long-duration scenarios, while standard evacuation cases decrease. This indicates that intense, short-term rainfall has a more severe impact on road accessibility, necessitating earlier evacuation initiation. The proposed methodology was tested in the Liuying and Xuejia urban planning area, demonstrating both practical applicability and operational feasibility, with potential for broader application in other urban and watershed areas.
In summary, the contributions of this study are as follows: (1) it establishes an integrated dynamic assessment framework for flooding and road accessibility, addressing the limitations of static maximum flood potential maps; (2) it develops an operational road accessibility risk indicator, Road Flood Impact Level, with time series characteristics; (3) it incorporates building attributes and evacuation grouping strategies to enhance the accuracy and practicality of evacuation demand assessments; and (4) it proposes a phased evacuation initiation schedule to support evacuation planning for local governments and community organizations. Future work suggests integrating the proposed assessment framework with real-time disaster information through digital communication systems to enhance the dissemination of evacuation alerts. It is also recommended to include vulnerable groups, such as people with mobility impairments and the elderly, along with broader social parameters in practical applications to improve the comprehensiveness and inclusiveness of the assessment results.
1. Alexander, D. E. (2002). Principles of emergency planning and management. Oxford University Press.
2. Alabbad, Y., Mount, J., Campbell, A. M., & Demir, I. (2021). Assessment of transportation system disruption and accessibility to critical amenities during flooding: Iowa case study. Science of the Total Environment, 793, 148476.
3. Bakhtiari, S., Najafi, M. R., Goda, K., & Peerhossaini, H. (2025). A dynamic Bayesian network approach to characterize multi-hazard risks and resilience in interconnected critical infrastructures. Reliability Engineering & System Safety, 257, 110815.
4. Borowska-Stefańska, M., Kowalski, M., Wiśniewski, S., & Dulebenets, M. A. (2023). The impact of self-evacuation from flood hazard areas on the equilibrium of the road transport. Safety Science, 157, 105934.
5. Darvishan, A., & Lim, G. J. (2021). Dynamic network flow optimization for real-time evacuation reroute planning under multiple road disruptions. Reliability Engineering & System Safety, 214, 107644.
6. Dawod, G. M., Mirza, M. N., & Al-Ghamdi, K. A. (2012). GIS-based estimation of flood hazard impacts on road network in Makkah city, Saudi Arabia. Environmental Earth Sciences, 67(7), 2205-2215.
7. Deltares. (2025). SOBEK: Hydrodynamics, Rainfall Runoff and Real Time Control – User Manual (Version 1.00, Revision 80288). Deltares.
8. DHI. (2011). MIKE 11: A modelling system for Rivers and Channels User Guide. DHI.
9. ESRI. (2021). Algorithms used by the ArcGIS Network Analyst extension. ArcGIS Desktop Help. https://desktop.arcgis.com/en/arcmap/latest/extensions/network-analyst/algorithms-used-by-network-analyst.htm
10. ESRI. (2025). Algorithms used by Network Analyst. ArcGIS Pro Help. https://pro.arcgis.com/en/pro-app/latest/help/analysis/networks/algorithms-used-by-network-analyst.htm
11. FEMA. (2022). National Preparedness Report. FEMA.
12. Gissing, A., Haynes, K., Coates, L., & Keys, C. (2016). Motorist behaviour during the 2015 Shoalhaven floods. Australian Journal of Emergency Management, 31(2), 25-30.
13. He, K., Pregnolato, M., Carhart, N., Neal, J., & De Risi, R. (2024). Functionality assessment of road network combining flood roadworthiness and graph topology. Transportation Research Part D: Transport and Environment, 135, 104354.
14. Intergovernmental Panel on Climate Change. (2018). Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24. https://doi.org/10.1017/9781009157940.001
15. Iosub, M., Minea, I., Hapciuc, O., & Romanescu, G. (2015). The use of Hec-Ras modelling in flood risk analysis. Aerul si Apa. Componente ale Mediului, 315.
16. Junqueira, R., Serrao-Neumann, S., & White, I. (2021). A systematic review of approaches for modelling current and future impacts of extreme rainfall events using green infrastructure. Journal of Cleaner Production, 290, 125173.
17. Khatooni, K., Hooshyaripor, F., MalekMohammadi, B., & Noori, R. (2025). A new approach for urban flood risk assessment using coupled SWMM–HEC-RAS-2D model. Journal of Environmental Management, 374, 123849.
18. Kramer, M., Terheiden, K., & Wieprecht, S. (2016). Safety criteria for the trafficability of inundated roads in urban floodings. International Journal of Disaster Risk Reduction, 17, 77-84.
19. Marian, A. R., Hijazi, R., Masad, E., & Abdel-Wahab, A. (2024). Quantifying the vulnerability of road networks to flood-induced closures using traffic simulation. Transportation Engineering, 17, 100262.
20. Maskrey, A. (1989). Disaster Mitigation: A Community-Based Approach. Oxfam.
21. Meng, L., Dong, Z. S., & Liu, D. (2023). Ridesharing evacuation models of disaster response. Computers & Industrial Engineering, 184, 109565.
22. Mifune, Y. (1995)。地域.地区防災まちづくり。株式会社オーム社。
23. Munz, L., Kauzlaric, M., Mosimann, M., Fehlmann, A., Martius, O., & Zischg, A. P. (2023). Participatory development of storymaps to visualize the spatiotemporal dynamics and impacts of extreme flood events for disaster preparedness. International Journal of Disaster Risk Reduction, 98, 104039.
24. Naoum-Sawaya, J., & Yu, J. Y. (2017). Ridesharing for emergency evacuation. INFOR: Information Systems and Operational Research, 55(4), 339-358.
25. Panda, R. K., Pramanik, N., & Bala, B. (2010). Simulation of river stage using artificial neural network and MIKE 11 hydrodynamic model. Computers & Geosciences, 36(6), 735-745.
26. Papilloud, T., Steiner, A., Zischg, A., & Keiler, M. (2024). Road network disruptions during extreme flooding events and their impact on the access to emergency medical services: A spatiotemporal vulnerability analysis. Science of the Total Environment, 956, 177140.
27. Pregnolato, M., Ford, A., Wilkinson, S. M., & Dawson, R. J. (2017). The impact of flooding on road transport: A depth-disruption function. Transportation Research Part D: Transport and Environment, 55, 67-81.
28. Ranasinghe, R., Ruane, A. C., Vautard, R., Arnell, N., Coppola, E., Cruz, F. A., Dessai, S., Islam, A. S., Rahimi, M., Ruiz Carrascal, D., Sillmann, J., Sylla, M. B., Tebaldi, C., Wang, W., & Zaaboul, R. (2021). Climate Change Information for Regional Impact and for Risk Assessment. In Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1767-1926). Cambridge University Press. doi:10.1017/9781009157896.014.
29. Rossman, L. A., & Simon, M. A. (2022). Storm water management model: User’s manual version 5.2 (EPA/600/R-22/030). U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Solutions and Emergency Response.
30. Sayyady, F., & Eksioglu, S. D. (2010). Optimizing the use of public transit system during no-notice evacuation of urban areas. Computers & Industrial Engineering, 59(4), 488-495.
31. Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I., Satoh, M., Vicente-Serrano, S. M., Wehner, M., & Zhou, B. (2021). Weather and Climate Extreme Events in a Changing Climate. In Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1513-1766). Cambridge University Press. doi:10.1017/9781009157896.013.
32. Shand, T., Cox, R., Blacka, M., & Smith, G. (2011). Australian Rainfall and Runoff Project 10: Appropriate safety criteria for vehicles. Engineers Australia.
33. Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental Modelling & Software, 90, 201-216.
34. Terti, G., Ruin, I., Anquetin, S., & Gourley, J. J. (2015). Dynamic vulnerability factors for impact-based flash flood prediction. Natural Hazards, 79, 1481-1497.
35. U.S. Army Corps of Engineers. (2025). HEC-RAS User’s Manual. Hydrologic Engineering Center.
36. United Nations Office for Disaster Risk Reduction. (2018). UNISDR annual report 2017: 2016–17 biennium work programme final report. United Nations Office for Disaster Risk Reduction.
37. Vanderkimpen, P., Melger, E., & Peeters, P. (2009). Flood modeling for risk evaluation – A MIKE FLOOD vs. SOBEK 1D2D benchmark study. In Flood risk management: Research and practice. Taylor & Francis Group.
38. Yin, J., Yu, D., Yin, Z., Liu, M., & He, Q. (2016). Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China. Journal of Hydrology, 537, 138-145.
39. Zang, Y., Huang, J., & Wang, H. (2024). Dynamic impact assessment of urban floods on the compound spatial network of buildings-roads-emergency service facilities. Science of the Total Environment, 926, 172007.
40. Zhang, W., Zhou, J., Liu, Y., Chen, X., & Wang, C. (2016). Emergency evacuation planning against dike-break flood: A GIS-based DSS for flood detention basin of Jingjiang in central China. Natural Hazards, 81(2), 1283-1301.
41. Zhao, X., Ji, K., Xu, P., Qian, W., Ren, G., & Shan, X. (2020). A round-trip bus evacuation model with scheduling and routing planning. Transportation Research Part A: Policy and Practice, 137, 285-300.
42. 中央氣象署(2020)。新雨量分級Q&A全書下載。交通部中央氣象署。
43. 中央氣象署(n.d.)。氣候觀測資料查詢服務。中央氣象署。 https://codis.cwa.gov.tw/StationData
44. 內政部建築研究所(2000)。都市計畫防災規劃手冊彙編。
45. 吳誠文(2024)。強化民間災防,提升國家韌性。行政院災害防救專家諮詢委員會。
46. 周芳如(2003)。從都市型水災探討防救災避難圈規劃之研究〔碩士論文〕。中華大學。
47. 李佩瑜(2000)。由鄰里單元觀點探討震災時救災避難圈之規劃〔碩士論文〕。國立成功大學。
48. 林季樺(2018)。藉空間自相關與路網分析探討災害弱勢族群與防災避難區域之區位關係-以淹水災害為例〔碩士論文〕。國立臺灣師範大學。
49. 林靖亞(2013)。防災避難疏散作業最佳決策模式之研究〔碩士論文〕。國立中央大學。
50. 柳營區公所(2024)。柳營區區級地區災害防救計畫(113年修訂版)。
51. 施邦築、許銘熙、游馨結(2004)。敏督利颱風及七二水災勘災調查(國科會專題研究計畫成果報告)。行政院國家科學委員會。
52. 學甲區公所(2024)。學甲區地區災害防救計畫(113年修訂)。
53. 游崇華(2012)。極端氣候下避難疏散路徑規劃-以台北市為例〔碩士論文〕。國立台灣科技大學。
54. 經濟部水利署(2015)。第三代淹水潛勢圖。
55. 經濟部水利署(2017a)。急水溪水系本流及支流白水溪治理規劃檢討。
56. 經濟部水利署(2017b)。急水溪水系本流及支流白水溪治理計畫(第一次修正)。
57. 經濟部水利署(2021)。110年臺南市水災保全計畫。
58. 經濟部水利署(2023a)。中華民國一一一年臺灣水文年報:2022。
59. 經濟部水利署(2023b)。急水溪水系逕流分擔評估規劃。
60. 水災災害救助種類及標準(民國113年修正)。第四條。經濟部。
61. 災害防救法(民國114年修正)。第六十三條。內政部。
62. 臺南市政府(2015)。變更學甲都市計畫(第三次通盤檢討)書。
63. 臺南市政府(2018)。變更學甲都市計畫(都市計畫圖重製專案通盤檢討)書。臺南市政府。
64. 臺南市政府(2022)。111年度變更柳營主要計畫(第三次通盤檢討)(含都市計畫圖重製)(第一階段)書
65. 臺南市政府(2023)。臺南市地區災害防救計畫。
66. 臺灣氣候變遷推估資訊與調適知識平台(2024)。暖化趨勢下的臺灣極端高溫與衝擊。國家科學及技術委員會。
67. 臺灣氣候變遷推估資訊與調適知識平台(n.d.)。氣候變遷降雨頻率分析-設計暴雨改變率 https://tccip.ncdr.nat.gov.tw/ds_06_02.aspx
68. 國家災害防救科技中心(2019)。2018年0823豪雨災害事件報告。國家災害防救科技中心。
69. 國家災害防救科技中心(2025)。哪裡容易淹水-淹水潛勢。
70. 農業部農村發展及水土保持署。(n.d.)。土石流警戒基準值訂定方法。
71. 廖志翔(2006)。民國94年颱風調查報告-第5號海棠(Haitang)颱風(0505)。氣象學報, 46 (2), 63-88。
校內:2026-09-01公開