| 研究生: |
蔡昇宏 Tsai, Sheng-Hung |
|---|---|
| 論文名稱: |
台灣金控投入Fintech程度的經營績效評估 A study of the efficiency of taiwan’s bank holding companies with respect to their investment in fintech. |
| 指導教授: |
林泰宇
Lin, Tai-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 台灣金控 、Fintech 、專利數 、兩階段動態資料包絡分析法 、經營績效 |
| 外文關鍵詞: | FHC, Fintech, Patents, SBM, Operational Performance |
| 相關次數: | 點閱:81 下載:28 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討 Fintech 的發展趨勢及其對台灣金融控股公司經營績效的影 響。隨著科技的快速進步,金融科技已成為金融服務不可或缺的一部分,並對金 融機構的經營模式產生深遠影響。台灣政府自 2015 年起積極推動金融科技政策, 以促進該領域的發展。然而,金融機構在採用金融科技的過程中面臨諸多挑戰, 包括技術整合、風險管理和激烈的市場競爭。其中金融科技專利更是保護公司智 慧財產權的重要手段。儘管金控在金融科技領域的專利申請數量各異,但專利的 實際作用及對經營績效的影響仍不明確。
本研究採用兩階段動態資料包絡分析法(Two-stage dynamic SBM),將金控 的金融科技專利數量作為其一投入項,以評估其對經營績效的影響,並得到以下 結果:
1. 台灣 13 間金控於研究期間平均效率為 0.3760,其中,以 2020 年的平均效率 最高;2022 年的平均效率最低。於研究期間效率最好的領先企業為國票金,其效 率值在六年期間皆為 1,表示投入與產出的組合上達到了最佳狀態,經營績效成 為指標企業。
2. 2017 至 2021 年間,富邦金專利效率表現優異,六年平均效率值以 0.833 領先, 顯示其長期技術創新與知識產權戰略的成功。但 2022 年突降至零,反映可能的 創新下滑或專利流程變化。整體行業趨勢也顯示創新力減弱。
3. 在第一階段金控經營效率由國票金與元大金位居第一,投入效率最佳;第二階 段市場效率,元大金處於倒數第三。
Fintech has become a vital component of financial services due to the rapid technological advancements, which has had a profound impact on the business models of financial institutions. Fintech patents are essential for safeguarding a company's intellectual property rights. Despite the various number of patent applications filed by FHC in the Fintech field, the actual utility of these patents and their impact on operational performance remain unclear.This research employs a two-stage dynamic SBM (Slack-Based Measure) approach, using the number of Fintech patents held by FHC as one of the input items to assess their impact on operational performance, yielding the following results:(1) During the study period, there were 13 Taiwanese FHC with an average efficiency of 0.3760, with the most efficient in 2020 and the least in 2022. The leading enterprise in terms of efficiency was KGI Bank, which maintained an efficiency value of 1 throughout the six years, indicating an optimal combination of inputs and outputs and setting a benchmark for operational performance. (2) From 2017 to 2021, Fubon Bank demonstrated exceptional patent efficiency, leading with an average efficiency value of 0.833 over six years, indicating its long-term success in technological innovation and intellectual property strategy. In 2022, this figure dropped to zero, which could be a sign of a decline in innovation or changes in the patent process. The overall industry trend also suggests a decline in innovative capacity.(3) In the first stage, KGI Bank and Yuanta Bank ranked first in operational efficiency, with the best input efficiency; in the second stage, Yuanta Bank was third from the bottom in market efficiency.
Berger, A., & Humphrey, D. B. (1997). Efficiency of financial institutions: International survey and directions for future research. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.2140
Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078-1092.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429-444.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the royal statistical society: series A (General), 120(3), 253-281.
Färe, R., & Grosskopf, S. (1997). Intertemporal production frontiers: with dynamic DEA. Journal of the operational research society, 48(6), 656-656.
Huang, J., Chen, J., & Yin, Z. (2014). A Network DEA Model with Super Efficiency and Undesirable Outputs: An Application to Bank Efficiency in China. Mathematical Problems in Engineering, 2014, 1-14.
K. Hafsal., Anandarao Suvvari & S. Raja Sethu Durai. (2020). "Efficiency of Indian banks with non-performing assets: evidence from two-stage network DEA." Future Business Journal 6.
Knewtson, H. S., & Rosenbaum, Z. A. (2020). Toward understanding FinTech and its industry. Managerial Finance, 46(8), 1043-1060. https://doi.org/10.1108/mf-01-2020-0024
Kou, G., Olgu Akdeniz, Ö., Dinçer, H., & Yüksel, S. (2021). Fintech investments in European banks: A hybrid IT2 fuzzy multidimensional decision-making approach. Financial Innovation, 7(1). https://doi.org/10.1186/s40854-021-00256-y
Liu, Z.-J. (2013). Operating Performance of Public Banks in Taiwan after. Privatization. Information Management and Business Review 5: 424-433.
Lu, L. (2014). Application of Malmquist Indexes, Empirical Model and Data Envelopment Analysis: A Measure of Performance and Efficiency of Commercial Banks in Taiwan. British Journal of Economics, Management and Trade 4: 341-348.
Li T., Kou G., Peng Y.& Yu P. (2021). An Integrated Cluster Detection, Optimization, and Interpretation Approach for Financial Data. IEEE Transactions on Cybernetics 52: 13848-13861.
Pollari, I. (2016). The rise of Fintech opportunities and challenges. Jassa-the Finsia. Journal of Applied Finance: 15.
Petrushenko, Y., Kozarezenko, L., Glinska-Newes, A., Tokarenko, M., & But, M. (2018). The opportunities of engaging FinTech companies into the system of cross-border money transfers in Ukraine. Investment Management and Financial Innovations.
Ratecka, P. (2020). FinTech—definition, taxonomy and historical approach.
Sueyoshi, T., & Sekitani, K. (2005). Returns to scale in dynamic DEA. European Journal of Operational Research, 161(2), 536-544. https://doi.org/10.1016/j.ejor.2003.08.055
Staub, R. B., Da Silva e Souza, G., & Tabak, B. M. (2010). Evolution of bank efficiency in Brazil: A DEA approach. European Journal of Operational Research, 202(1), 204-213. https://doi.org/10.1016/j.ejor.2009.04.025
Shi, X., Li, Y., Emrouznejad, A., Xie, J., & Liang, L. (2017).Estimation of potential gains from bank mergers: A novel two-stage cost efficiency DEA model. Journal of the Operational Research Society 68: 1045-1055.
Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European journal of operational research, 130(3), 498-509.
Tone, K., & Tsutsui, M. (2010). Dynamic DEA: A slacks-based measure approach. Omega, 38(3), 145-156. doi:https://doi.org/10.1016/j.omega.2009.07.003
Titko, J., Stankevičienė, J., & Lāce, N. (2014). Measuring bank efficiency: DEA application. Technological. and Economic Development of Economy 20: 739-757.
Takeda, A. and Y. Ito (2021). A review of FinTech research. Int. J. Technol. Manag. 86: 67-88.
Thaker, K., Charles, V., Pant, A., & Gherman, T. (2021). A DEA and random forest regression approach to studying. bank efficiency and corporate governance. Journal of the Operational Research Society 73: 1258 - 1277.
Treu, J. S. (2022). The Fintech Sensation - What is it about? Journal of International Business and Management.
Treu, J. (2023). The chance of FinTech to be a new general-purpose technology. International Business Research, 16(11), 22. https://doi.org/10.5539/ibr.v16n11p22
Treu, J. (2023). Moving beyond silo thinking: A deductive analysis of financial literacy, financial inclusion, FinTech, and the UN sustainable development goals. International Journal of Economics and Finance, 16(2), 1. https://doi.org/10.5539/ijef.v16n2p1
Yu, M. M., Chen., L. H., Chen, K. Ch., & Tone, K. (2013). Operational efficiency in Taiwan banks with consideration of nonperforming loans: A dynamic network DEA. Workshop on DNDEA 2013.