簡易檢索 / 詳目顯示

研究生: 楊東榮
Yang, Tung-Jung
論文名稱: 低損耗介電材料及無線通訊元件之應用
Low Loss Dielectric Materials and Applications for Wireless Communication Components
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 120
中文關鍵詞: 濾波器陶瓷微波
外文關鍵詞: microwave, ceramic, filter
相關次數: 點閱:35下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗的介電材料,且試圖調整溫度飄移係數使其為零;第二部份將介紹微帶線濾波器,且實做於不同基板上探討元件尺寸的改善。
    第一部份首先要介紹(1-x)ZnAl2O4-xTiO2陶瓷系統之微波介電特性。由實驗中可得知(1-x)ZnAl2O4-xTiO2在x=0.5燒結在1390℃持溫4小時可得到最佳之介電特性εr~25.2,Q׃~277000(at 9GHz),τƒ~ +185 ppm/oC。由於此系統之τƒ為正值,故選擇以Mg0.95Co0.05TiO3(τƒ~-55 ppm/oC)、Mg0.95Zn0.05TiO3(τƒ~-40 ppm/oC)添加,探討溫度飄移係數趨近零之最佳比例。
    第二部份介紹摺疊式步階阻抗滤波器,那是利用阻抗比K>1的設計概念,使其達到抑制寄生響應。所以我們利用電磁模擬軟體HFSS,在滤波器中心頻率f0=2.45GHz、頻寬~7%的情況下模擬. 此外, 我們將濾波器實做於FR4、Al2O3及0.5ZnAl2O4-0.5TiO2 (ZAT)三種基板上。以更高之介電常數及品質因素使濾波器的電路尺寸及頻率響應上有較佳之改善。

    There are two main subjects in this paper. First, we will discuss the low loss dielectric material, and try to make temperature coefficient of resonant frequency near zero. Second, there will be a discussion of microstrip filter and improvement of circuit size in different substrates.
    First, the microwave dielectric properties of (1-x)ZnAl2O4-xTiO2 have been investigated. The experiment results show that (1-x)ZnAl2O4-xTiO2 has the best properties at x=0.5 and sintering temperature 1390℃ for four hours, which could reach the best dielectric properties εr~ 25.2, Q×f ~ 277000(at 9GHz) and τƒ~ +185 ppm/oC. Concerning about the positive value of , we choose adding the Mg0.95Co0.05TiO3(τƒ~-55 ppm/oC) and Mg0.95Zn0.05TiO3(τƒ~-40 ppm/oC) to adjust the value, then we could make temperature coefficient of resonant frequency near zero.
    Besides, hairpin planar filter were studied in second section which achieved spurious responses supression by properly choosing the different stepped- impedance ratio. We simulated it by electromagnetic simulation software (HFSS) at the setting of center frequency 2.45GHz and bandwidth 7%. Also, we try to realize that the improvement of Insertion Loss and circuit size at the substitution of FR4, Al2O3 and 0.5ZnAl2O4-0.5TiO2(ZAT) for the microstrip bandpass filter.

    摘要……………………………………………………………………III Abstract………………………………………………………………IV 誌謝……………………………………………………………………VI 目 錄…………………………………………………………………VII 表 目 錄………………………………………………………………XI 圖 目 錄………………………………………………………………XII 第一章 緒論……………………………………………………………1 1-1 前言…………………………………………………………………1 1-2 研究目的……………………………………………………………1 第二章 介電材料原理…………………………………………………2 2-1 陶瓷材料之微波介電特性…………………………………………2 2-1-1 介電常數(Dielectric constant:K、εr)…………………2 2-1-2 介電品質因數(Quality factor:Q):……………………5 2-1-3 共振頻率之溫度係數(τƒ):…………………………………6 2-2 介電共振器(Dielectric Resonator, DR)原理…………………7 2-3 尖晶石結構………………………………………………………11 2-4 鈦鐵礦結構………………………………………………………11 2-4 燒結原理…………………………………………………………13 2-4-1 燒結的種類 ……………………………………………………13 2-4-2 液相燒結理論 …………………………………………………14 2-4-3 陶瓷體燒結的三過程:………………………………………16 第三章 微帶線及濾波器之原理 ………………………………………17 3-1 濾波器的簡介……………………………………………………17 3-2 微帶線原理………………………………………………………20 3-2-1 微帶傳輸線介紹………………………………………………20 3-2-2 微帶線傳輸組態………………………………………………20 3-2-3 微帶線各項參數公式計算及考量 ……………………………21 3-3 微帶線諧振器種類………………………………………………30 3-4 共振器間的耦合形式……………………………………………33 3-4-1 電場耦合:……………………………………………………33 3-4-2 磁場耦合:……………………………………………………36 3-4-3 混和耦合:……………………………………………………39 3-5 Tapped Line 輸入及輸出點的設計……………………………42 3-6 饋入結構分析……………………………………………………43 3-6-1 非對稱性饋入 …………………………………………………43 3-7 步階阻抗諧振器 …………………………………………………47 3-7-1 基本步階阻抗諧振器…………………………………………47 3-7-2 寄生頻率響應 …………………………………………………49 3-8 折疊型之Hairpin 諧振器………………………………………49 第四章 實驗程序與量測方法…………………………………………53 4-1 微波介電材料的製備……………………………………………53 4-2 微波介電材料的特性分析與量測………………………………55 4-2-1 X-Ray(XRD)分析……………………………………………55 4-2-2 掃瞄式電子顯微鏡(SEM)分析………………………………55 4-2-3 密度之量測……………………………………………………55 4-2-4 微波介電特性之量測…………………………………………56 4-3 濾波器之製作與量測……………………………………………62 4-3-1 濾波器設計規格………………………………………………62 4-3-2 濾波器製作……………………………………………………63 4-3-3 濾波器量測……………………………………………………64 第五章 實驗結果與討論………………………………………………65 5-1 (1-x)ZnAl2O4 - xTiO2微波特性之探討………………………65 5-1-1 (1-x)ZnAl2O4 - xTiO2系統之XRD相組成分析………………65 5-1-2 (1-x)ZnAl2O4 - xTiO2系統之SEM微結構分析………………66 5-1-3 (1-x)ZnAl2O4 - xTiO2系統之密度分析……………………66 5-1-4 (1-x)ZnAl2O4 - xTiO2系統之介電特性分析………………67 5-2 x(Mg0.95Co0.05)TiO3 -(1-x)(ZnAl2O4-TiO2)之微波特性探討 ………………………………………………………………81 5-2-1 xMCT-(1-x)ZAT系統之XRD相組成分析………………………81 5-2-2 xMCT-(1-x)ZAT系統之SEM微結構分析………………………81 5-2-3 xMCT-(1-x)ZAT系統之密度分析………………………………82 5-2-3 xMCT-(1-x)ZAT系統之介電特性分析…………………………82 5-3 x(Mg0.95Zn0.05)TiO3 -(1-x)(ZnAl2O4-TiO2)之微波特性探討 ………………………………………………………………93 5-3-1 xMZT-(1-x)ZAT系統之XRD相組成分析………………………93 5-3-2 xMZT-(1-x)ZAT系統之SEM微結構分析………………………93 5-3-3 xMZT-(1-x)ZAT系統之密度分析………………………………94 5-3-4 xMZT-(1-x)ZAT系統之介電特性分析…………………………94 5-4 濾波器響應………………………………………………………105 5-4-1 零度饋入與非零度饋入………………………………………105 5-4-2 步階阻抗長度之影響…………………………………………106 5-4-3 耦合係數之探討………………………………………………107 5-5 濾波器之特性與探討……………………………………………108 5-5-1 FR4 ……………………………………………………………108 5-5-2 Al2O3基板……………………………………………………111 5-5-2 ZnAl2O4-TiO2基板……………………………………………113 第六章 結論…………………………………………………………117 參考文獻 ……………………………………………………………118

    [1] J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoonand H.-J Kim, “Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values”, J. Appl. phys., vol.33, pp.5466-5470,1994.
    [2]David M. Pozar “Microwave Engineering”, Addison-Wesley, 1998.
    [3]D. Kajfez , “ Computed model field distribution for isolated dielectric resonators , ” IEEE. Trans. Microwave Theory Tech. , vol. MTT-32, pp. 1609-1616, Dec.1984.
    [4]D. Kajfez, “ Basic principle give understanding of dielectric waveguides and resonators , ” Microwave SysTFm News, vol. 13, pp. 152-161, 1983.
    [5]D. Kajfez, and P. Guillon, Dielectric resonators. , New York: Artech House, 1989.
    [6]陶瓷材料概論, Kingery, Bowen, Uhlmann 著, 陳皇鈞譯, 曉園出版社.
    [7]W.J.Huppmann and G.Petzow “The Elementary Mechanisms of Liquid Sintering”, Sintering Processes, Plenum Press, pp. 189-202, 1979.
    [8]H.S. Cannon and F.V. Lenel in " Proceedings of the Plansee Seminar ", Edited by F.Benesovsky Metallwerk Plansee, Reutte, pp.106, 1953.
    [9]V.N. Eremenko , Y.V. Naidich and I.Aienko , " Liquid Sintefing ", Consolation New York , ch4, 1970.
    [10]K.S. Hwang,Phd Thesis,Rensselaer Ploytechnic in Troy,1984.
    [11]J.W. Cahn and R.B.Heady, J.Am. Ceram. , pp.406, 1970.
    [12]R. Raj and C.K.Chyung “ Solution Reprecipitation Creep in Glass Ceramics ” Acta Metall, pp. 159-166, 1980.
    [13]W.J. Huppmann and G.Petzow: Sintering process, Edited by G.C. Kuczynski, PlenumPress, New York, pp. 189, 1980.
    [14]W.J.Huppmann and G.Petzow, Ber. Bunnsenges Phys. Chem.vol 82, pp. 308, 1978.
    [15]R.M.German : Liquid Phase Sintering,Plenum Press, New York, ch4, 1985.
    [16]J.H.Jean and C.H.Lin: J.Mater.Sci.24 , pp. 500, 1989.
    [17]R.L. Geiger, P.E. Allen, N.R. Strader, “VLSI Design Techniques for Analog and Digital Circuits”, McGraw-Hill, pp. 674-685, 1990.
    [18]V.N.Eremenko , Y.V.NaidichandI.Aienko , " Liquid Sintefing " , Consolation New York , ch4, 1970
    [19]K. C. Gupta , R. Garg, I. Bahl , and E Bhartis , “Microstrip Lines and Slotlines” , Second Edition, Artech House, Boston, 1996.
    [20]R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
    [21]G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
    [22]V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Te-ch., vol. MTT-20, pp. 573-578, Sep. 1980.
    [23]張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
    [24]K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
    [25]J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications: Wiley-Interscience, 2001.
    [26]J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits,” McGraw-Hill, 1992.
    [27]J. S. Wong, "Microstrip Tapped-Line Filter Design," Microwave Theory and Techniques, IEEE Transactions on, vol. 27, pp. 44-50, 1979.
    [28]S.-Y. Lee and C.-M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microwave Theory Tech., vol.48, pp.2482–2490, Dec. 2000.
    [29]L. H. Hsieh, K. Chang, “Tunable Microwave Bandpass Filters With Two Transmission Zeros,” IEEE Trans. Microwave Theory Tech., vol. 51,NO.2 pp. 520-525, Feb. 2003.
    [30]M. Makimoto and S. Yamashita, "Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators," Microwave Theory and Techniques, IEEE Transactions on, vol. 28, pp. 1413-1417, 1980.
    [31]P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE MTT-S, Symposium Dig., pp.473-476, 1985.
    [32]Y. Kobayashi and N. Katoh, “Microwave measurement of dielectric properties of lo-w-loss materials by dielectric rod resonator method,” IEEE. Trans. Micr- owave Theory Tech., MTT-33, 586-592, 1985.
    [33]Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., MTT-28, 1077-1085, 1980.
    [34]B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range,” IEEE Trans. MTT, vol. MTTS, pp. 402-410, 1960.

    下載圖示 校內:2010-07-16公開
    校外:2010-07-16公開
    QR CODE