簡易檢索 / 詳目顯示

研究生: 曾薐璇
Tseng, Leng-Hsuan
論文名稱: 非線性波浪場中之異常波浪發生機率
Freak Wave Occurrence Probability in a Nonlinear Wave Field
指導教授: 高家俊
Kao, Chia-Chuen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 72
中文關鍵詞: 異常波浪發生機率非線性波
外文關鍵詞: Freak wave, Occurrence probability, Nonlinear wave
相關次數: 點閱:108下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 異常波浪的發生對於航行與海域遊憩安全都造成很大的威脅,異常波浪的預測可以提供預警訊息,降低危害風險。截至目前為止,異常波浪發生機制仍未有定論,以定率的方式進行預測尚不可行,本研究以序率方法從事異常波浪發生機率研究。本研究基於非線性波理論,推導異常波浪發生機率估算之理論式,結果顯示異常波浪的發生機率與水位變化的峰度以及波浪數目有關,數值解顯示非線性理論推估所得之異常波浪發生機率最大為線性波理論所得之4倍。本文以基隆碧砂漁港外長期連續波浪觀測資料進行理論驗證,分析結果顯示異常波浪發生機率平均有22.4%的誤差,本文檢討其原因認為與在推導最大波高超越機率時之近似以及使用線性理論之波高與水位均方根比值是可能的誤差來源,本文研究發現,前者的影響程度很小,後者為主要之誤差來源,經以實測波高與水位均方根關係式代入推導異常波浪發生機率,並再以長期實測數據驗證,均方根誤差降低至15.8%,改進了異常波浪發生機率之估算。

    Freak wave will cause huge risks to ships or people doing costal activities. Prediction of freak wave can provide information for early warning and then decrease risk of hazards. Since the mechanism of freak wave is still unclear so far, deterministic prediction is not possible. Therefore stochastic method is used by this study for research of occurrence probability prediction of freak wave. In this study, nonlinear wave theory is applied for formula to estimate freak wave occurrence probability. Result demonstrates that occurrence probability of freak wave is related to two parameters: number of waves and kurtosis of water elevation.
    Analysis of the formula shows the maximum occurrence probability can become four times larger than the probability estimared under linear condition. Moreover, validated by the continuous measured data at Bisa Harbor, the average root-mean-square-error of assessment of occurrence probability is 22.4%. The possible reason to this difference is the ratio of significant wave height and root-mean-square of water elevation, which is assumed to be 4 under linear condition. Modified the formula by our field measurement data, the accuracy of estimation of occurrence probability improved. The modified formula is also validated by other in-situ data and can be used for future works with better assessments.

    摘要 I Abstract II 致謝 III 表目錄 VII 圖目錄 VIII 符號表 X 第一章 前言 1 1-1 研究背景 1 1-1-1 異常波浪的定義 1 1-1-2 發生機率之意義 2 1-2 前人研究 3 1-3 研究目的 4 1-4 研究方法 5 第二章 異常波浪發生機率理論推導 6 2-1 線性波理論 6 2-1-1 隨機波浪 6 2-1-2 雷禮波高分布 9 2-1-3 基於線性波理論之異常波浪發生機率 11 2-2 非線性波理論 12 2-2-1 波高分布 12 2-2-2 最大波高分布 14 2-2-3 基於非線性波理論之異常波浪發生機率 15 2-3 水位峰度與異常波浪發生之關聯 16 2-3-1 峰度係數定義 16 2-3-2 異常波浪發生對峰度係數之敏感度分析 19 第三章 現場實測資料分析 23 3-1 資料來源與品管 23 3-1-1 波浪資料來源 23 3-1-2 資料品管 25 3-2 實測異常波浪特性 30 3-2-1 異常波浪案例 30 3-2-2 實測異常波浪發生機率 34 3-2-3 異常波浪發生時之峰度係數 36 3-3 理論計算機率與實測結果比較 38 3-3-1 影響異常波浪發生機率之因子 38 3-3-2 實測資料比對 41 第四章 異常波浪發生機率估算修正 48 4-1 波浪數目之影響 48 4-2 H1/3與ηrms關係探討 50 4-3 機率推算係數α之修正 52 4-4 機率推算修正結果之驗證 55 第五章 結論與建議 57 5-1 結論 57 5-2 建議 59 參考文獻 i 附錄 iv 附錄一: 碧砂漁港波浪站前十大AI值異常波浪水位時序列 iv 附錄二: 碧砂漁港波浪站前十大波高異常波浪水位時序列 ix

    [1] Baschek, B., Imai, J., 2011. Rogue Wave Observations Off the US West Coast. Oceanography 24 (2), 158-165.
    [2] Cartwright, D.E., Longuet-Higgins, M.S., 1956. The Statistical Distribution of the Maxima of a Random Function. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 237 (1209), 212-232.
    [3] Chalikov, D., 2009. Freak waves: Their occurrence and probability. PHYSICS OF FLUIDS 21 (7).
    [4] Chien, H., Kao, C.C., Chuang, L.Z.H., 2002. On the characteristics of observed coastal freak waves. Coastal Engineering Journal 44 (4), 301-319.
    [5] Didenkulova, I., Anderson, C., 2010. Freak waves of different types in the coastal zone of the Baltic Sea. Natural Hazards and Earth System Sciences 10 (9), 2021-2029.
    [6] Dysthe, K., Krogstad, H.E., Muller, P., 2008. Oceanic rogue waves. Annual Review of Fluid Mechanics 40, 287-310.
    [7] Forristall, G.Z., 1984. The Distribution of Measured and Simulated Wave Heights as a Function of Spectral Shape. Journal of Geophysical Research-Oceans 89 (Nc6), 547-552.
    [8] Gemmrich, J., Garrett, C., 2011. Dynamical and statistical explanations of observed occurrence rates of rogue waves. Natural Hazards and Earth System Sciences 11 (5), 1437-1446.
    [9] Gōda, Y., 2010. Random seas and design of maritime structures, 3rd ed. World Scientific, New Jersey.
    [10] Janssen, P.A.E.M., 2003. Nonlinear four-wave interactions and freak waves. Journal of Physical Oceanography 33 (4), 863-884.
    [11] Kharif, C., Pelinovsky, E., 2003. Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics - B/Fluids 22 (6), 603-634.
    [12] Kharif, C., Pelinovsky, E., Slunyaev, A., 2009. Rogue Waves in the Ocean. Springer Berlin Heidelberg.
    [13] Kimura, A., Ohta, T., 1994. Probability of the freak wave appearance in a 3-dimensional sea condition, 24th Conference on Coastal Engineering, pp. 456-467.
    [14] Liu, P.C., Chen, H.S., Doong, D.J., Kao, C.C., Hsu, Y.J.G., 2009. Freaque waves during Typhoon Krosa. Annales Geophysicae 27 (7), 2633-2642.
    [15] Liu, P.C., MacHuchon, K.R., Wu, C.H., 2004. Exploring rogue waves from observations in South Indian Ocean, in: Olagnon, M., Prevosto, M. (Eds.), Rogue Waves 2004, Ifremer, Brest, France, pp. 1-10.
    [16] Longuet-Higgins, M.S., 1952. On the statistical distribution of the heights of sea waves. Journal of Marine Research 11, 245-265.
    [17] Longuet-Higgins, M.S., 1963. The effect of non-linearities on statistical distributions in the theory of sea waves. Journal of Fluid Mechanics 17, 459-480.
    [18] Mori, N., 2004. Occurrence probability of a freak wave in a nonlinear wave field. Ocean Engineering 31 (2), 165-175.
    [19] Mori, N., Janssen, P.A.E.M., 2006. On Kurtosis and Occurrence Probability of Freak Waves. Journal of Physical Oceanography 36 (7), 1471-1483.
    [20] Mori, N., Liu, P.C., Yasuda, T., 2002. Analysis of freak wave measurements in the Sea of Japan. Ocean Engineering 29 (11), 1399-1414.
    [21] Mori, N., Onorato, M., Janssen, P.A.E.M., 2011. On the Estimation of the Kurtosis in Directional Sea States for Freak Wave Forecasting. Journal of Physical Oceanography 41 (8), 1484-1497.
    [22] Mori, N., Yasuda, T., 2002. A weakly non-gaussian model of wave height distribution for random wave train. Ocean Engineering 29 (10), 1219-1231.
    [23] Naess, A., 1985. On the Distribution of Crest to Trough Wave Heights. Ocean Engineering 12 (3), 221-234.
    [24] Onorato, M., Osborne, A.R., Serio, M., Cavaleri, L., Brandini, C., Stansberg, C.T., 2004. Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiment. PHYSICAL REVIEW E 70.
    [25] Pelinovsky, E., Kharif, C., 2011. Outcomes of the Special Issue on Extreme and Rogue Waves. Natural Hazards and Earth System Sciences 11 (7), 2043-2046.
    [26] Pinho, U.F.d., Liu, P.C., Ribeiro, C.E.P., 2004. Freak Waves at Campos Basin, Brazil. Geofizica 21, 53-67.
    [27] Rice, S.O., 1945. Mathematical Analysis of Random Noise. Bell System Technical Journal 24 (1), 46-156.
    [28] Sand, S.E., Hansen, N.E.O., Klinting, P., Gudmestad, O.T., Sterndorff, M.J., 1990. Freak Wave Kinematics. Water Wave Kinematics 178, 535-549.
    [29] Soares, C.G., Cherneva, Z., Antao, E.M., 2004. Abnormal waves during Hurricane Camille. Journal of Geophysical Research-Oceans 109 (C8).
    [30] Stansell, P., 2004. Distributions of freak wave heights measured in the North Sea. Applied Ocean Research 26 (1-2), 35-48.
    [31] Tayfun, M.A., 1981. Distribution of Crest-to-Trough Wave Heights. Journal of the Waterway Port Coastal and Ocean Division-Asce 107 (3), 149-158.
    [32] Tayfun, M.A., 1983. Effects of Spectrum Bandwidth on the Distribution of Wave Heights and Periods. Ocean Engineering 10 (2), 107-118.
    [33] Taylor, P.H., Adock, T.A.A., Borthwick, A.G.L., Walker, D.A.G., Yao, Y., 2006. The nature of the Draupner fiant wave of 1st January 1995 and the associated sea-state, and how to estimate directional spreading from an Eulerian surface elevation time history, the 9th International Workshop on Wave Hindcasting and Forecasting, Victoria, BC, Canada.
    [34] Tsai, C.H., Su, M.Y., Huang, S.J., 2004. Observations and conditions for occurrence of dangerous coastal waves. Ocean Engineering 31 (5-6), 745-760.
    [35] Tseng, L.H., Chang, F.S., Doong, D.J., Tao, A., 2011. Probability of Ocean Freak Wave Occurrence, The 5th East Asian Workshop on Marine Environments (EAWoMEn), Kashiwa, Japan.
    [36] Wolfram, J., Linfoot, B., Stansell, P., 2000. Long- and short-term extreme wave statistics in the North Sea: 1994-1998, Rogue waves 2000, Brest, France, pp. 363-372.
    [37] 張志強, 2008. 應用小波轉換分析異常波浪特性, 水利及海洋工程研究所. 國立成功大學.
    [38] 張富翔, 2012. 由實測資料分析海洋異常波浪發生機率與波型, 海洋環境資訊學系. 國立臺灣海洋大學.
    [39] 陳正宏, 1999. 瘋狗浪原因初探, 水利及海洋工程研究所. 國立成功大學.
    [40] 蔡仁智, 2010. 資料探勘應用於波浪測量與近岸危險波浪預測模式, 海洋環境資訊學系. 國立臺灣海洋大學.
    [41] 蔡政翰, 林盈成, 曾相茂, 2001. 群波與瘋狗浪. 海洋工程學刊 1, 71-82.

    下載圖示 校內:2014-08-30公開
    校外:2014-08-30公開
    QR CODE