簡易檢索 / 詳目顯示

研究生: 黃啟倫
Huang, Chi-Lun
論文名稱: 以水熱法合成 Mn-α-alumina/mullite/silica 粉體殼核結構
Synthesizing Mn doped α-alumina/mullite/silica powder with core-shell structure by hydrothermal
指導教授: 黃紀嚴
none
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 55
中文關鍵詞: 殼核結構水熱法
外文關鍵詞: core-shell structure, hydrothermal
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 設計新的製程來開拓新的思維,保持原材料的功能與特性外且具有超越單一材料的優異性質,傳統上使用氧化物與氧化鋁混合煆燒可以使氧化鋁呈色,但是也會使得氧化鋁本身具有多種雜相,目前國外已經有使用添加離子來使氧化鋁呈色的相關技術,故參考相關技術來設計本實驗。
    本實驗以水熱法取代過去不同的製程,並且添加晶種以導入殼核的概念,以嘗試複合材料的觀念,水熱法在使用上可以控制水的酸鹼度pH值、溫度、持溫時間、壓力等等因素,並且可以添加晶種來幫助反應的發生,使用微波水熱的方式可快速達到目標溫度,並且具有更為準確的持溫時間控制。
    本實驗使用水熱法來製備具有離子相的boehmite粉體,並且再添加二氧化矽粉末為核,以同系統水熱的方式使boehmite覆蓋在核上,經過煆燒出Mn(III)-α-alumina/mullite/silica之粉體產物,具有殼核結構,其中殼為具有錳離子相的α-alumina,核為silica,主要變因有溫度、持溫時間、Mn/Al 之原子比,添加的二氧化矽比例,觀察EDS與XRD可以證實錳離子存在於結構之中,經由XRD可以證實α-alumina、mullite、silica相的存在,使用Zeta potential可以證實出表面性質的不同進而確定殼核結構的存在。

    Driven by trends in fashion, automotive and other consumer markets, pigments that generate special effects like angle-dependent color or decorative texture have a growing economic significance and can be found in various industrial products and end-user applications. Manganese-doped alumina (α-Al2O3) powders have important applications in the ceramic industry as pink pigments. They are industrially produced by using the traditional ceramic procedure that involves the mixing of the metal cations precursors (hydroxides, oxides or carbonates) and the calcination at high temperature of the mixture to develop the desired color and crystalline structure.
    In this study, hydrothermal method was selected to synthesis pink pigment powders. Aluminum and manganese nitrate was selected as a source of Al and Mn, while silica powder was introduced into hydrothermal system as core substance. The advantage of this experiment will be, lower temperature to produce precursor boehmite phase, fine and uniform particle size of pigment powder and core-shell structure to enhance color performance. We could use some instruments for inspecting such as DTA, SEM, EDS, XRD and Zeta potential, etc.
    We have found the lowest temperature that reaction could be product by DTA. Observing the structure of powder in high temperature by SEM and confirming core-shell structure is success by EDS and Zeta potential. Powders have provided with color of pink. We could enable the powders to need lower temperature to synthesize about 100℃ and use fewer nitrides to avoid danger of experiment.

    總目錄 摘要………………………………………....……………...........…..I Abstract………………………………………..…………..........…..II 致謝………………………………………....……………..........…III 總目錄……………………………………………………..........…IV 表目錄......…………………………………………………………VI 圖目錄…………………………......……………………………...VII 第一章 緒論…………………………………………....………......1 1-1研究背景………………………………..................................1 1-2研究目的……………………………………………..............3 第二章 理論基礎與前人研究…....……………………………......4 2-1 基本礦物介紹……....….………………….….......................4 2-1-1 Boehmite[4][5] ………….………………………….…......4 2-1-2 Mullite[3][6][7] ………….…………....………....…...….....4 2-1-3 α-alumia[8][9][10]結晶構造………………….............….....6 2-1-4 Cristobalite[11] ………….…………....……………..........7 2-2 水熱法原理 …………..………………….……................8 2-2-1 水熱法(Hydrothermal method)之概述……...….......8 2-2-2 水熱法之原理…………….…………………….…........8 2-2-3 高壓反應釜的反應容積與溫度之關係……….….........9 2-2-4 水熱法之優點…………….………………….…..........11 2-3 微波加熱原理…………….……………………...….……..12 2-4 微粒子之包覆技術目的[17.18.19.20.21] ……….……...….…....14 2-5 表面電位分析(Zeta potential)[22] ……..….……..................15 2-6 前人研究…………….……….…………….........................16 第三章 實驗方法與步驟…………….……....………...................20 3-1 實驗流程…………….………………..................................20 3-2 實驗材料與設備…………….………………......................20 3-2-1 實驗材料.......…………….……....………....................20 3-2-2 實驗與分析設備.......………….…………....................22 3-2-3 實驗設備介紹…………................................................22 3-3 實驗步驟…………….………….…….................................23 3-3-1 前置實驗(反應溫度最低點) …………….….………..23 3-3-2 前置實驗(持溫時間) …………….………………......24 3-3-3 實驗主體…………….……………..............................24 3-4 性質分析…………….……………….................................26 3-4-1 熱差/熱重分析(DTA/TG) …………….…………....26 3-4-2 X-ray繞射儀分析(X-ray Diffractometer, XRD) ….....26 3-4-3 掃描式電子顯微鏡分析(SEM) ………....……...........26 3-4-4 能量散佈光譜儀(EDS) …....…………………….…...27 3-4-5 表面電位儀(Zeta potential).…………...………..........27 第四章 結果與討論 …………….……………...........................28 4-1實驗數據代碼....…………….…….....………….................28 4-2熱差分析(DTA)....…………………...…………..................29 4-2-1添加二氧化矽的熱差反應……………..…..................29 4-2-2添加二氧化矽的熱差反應之討論....……………........31 4-3 X-光繞射分析(XRD) …………….………………..............32 4-3-1 添加二氧化矽條件…………….………………..........32 4-3-2 添加二氧化矽對X-光繞射分析之討論…………......41 4-4表面電位分析(Zeta potential)........………………...……....43 4-5 能量散佈光譜儀(EDS) …………….……....…...………...44 4-6 掃描式電子顯微鏡分析(SEM) …………………...……...46 第五章 結論與建議 …………….……………...........................50 5-1 結論 …………….…………….........................................50 5-2 建議 …………….………....….........................................51 參考文獻 …………….……….......…….........................................52 表目錄 表2-1 工業、科學與醫學使用的微波頻率範圍[15] …………...…14 表3-1 實驗使用之化學試劑…………….…………………......20 表3-2 微波加熱之條件設定…………….…………………….....25 圖目錄 圖 2-1 Al2O3與SiO2 之相圖[6][7] ...................................................5 圖 2-2 α-alumia的構造圖[8] …………….………………….…....6 圖 2-3 Al2O3構造之a1、a2 軸面剖面圖[10] ………..…….…......7 圖 2-4 水熱法應用的四個領域.......................................................8 圖 2-5 密閉的容器中,溶液反應溫度和反應體積的壓力關係圖 ..............................................................................................9 圖 2-6 液相填充量與氣體壓力關係圖[14] …………….………...10 圖 2-7 粉體製備技術中水熱法與傳統固相法的比較……….....11 圖 2-8 水分子構造圖………….....…………………………........13 圖 2-9 水分子受電磁波照射後,形成有序排列方式圖…….…13 圖 2-10 Boehmite結晶圖(A)為一般結構(B)為代表結晶成長方向[17]........................................................................................17 圖 2-11氧化鋁空缺示意圖[16] ……................................................17 圖 2-12 Mn/Al原子比對於α-alumia相生成之影響……...............18 圖 2-13 一般mullite 結構圖 [20] …..............................................19 圖 3-1 實驗流程圖 …….............................................................21 圖 3-2 ETHOS構造剖面圖…….................................................23 圖 3-3 實驗殼核示意圖(A)為無核系統(B)為添核系統..............25 圖 3-4 表面電位檢測示意圖…….................................................27 圖 4-1 熱差分析圖…….................................................................30 圖 4-2 25B00S之 X-光繞射分析圖……...................................33 圖 4-3 1300B00S之 X-光繞射分析圖……...............................34 圖 4-4 二氧化矽原始粉之 X-光繞射分析圖 …….....................35 圖 4-5 三種二氧化矽添加量在1000℃之X-光繞射分析圖 (θ is θ-Al2O3)…................................................…................36 圖 4-6 三種二氧化矽添加量在1100℃之X-光繞射分析圖 (θ is θ-Al2O3)…..............................................…..................37 圖 4-7 三種二氧化矽添加量在1200℃之X-光繞射分析圖 (α is α-Al2O3)…............................................…....................38 圖 4-8 三種二氧化矽添加量在1300℃之X-光繞射分析圖 (C is cristobalite and M is mullite)......................….........39 圖 4-9 三種二氧化矽添加量在1400℃之X-光繞射分析圖.....40 圖 4-10 XRD patterns of samples sintered at different temperatures (A is α-Al2O3, C is cristobalite and M is mullite) [19].......42 圖4-11 zeta potential分析圖……...................................................43 圖4-12 EDS分析圖…….................................................................45 圖4-13 二氧化矽原始粉1400℃之SEM分析圖…….................47 圖4-14 系統水熱後1200℃之SEM分析圖…….........................47 圖4-15 系統水熱後1300℃之SEM分析圖…….........................48 圖4-16 系統水熱後1400℃之SEM分析圖…….........................48 圖4-17 以噴霧乾燥法所製備之boehmite粉體SEM圖[1][2] .......49

    1. E. Lopez-Navarrete, M. Ocan, “Aerosol-derived Mn-doped Al2O3 pink pigments prepared in the absence of fluxes,” Dyes and Pigments, 61 (2004) 279–286.
    2. E. Lopez-Navarrete, M. Ocan, “Chemical state and distribution of Mn ions in Mn-doped α- Al2O3 solid solutions prepared in the absence and the presence of fluxes,” Journal of the European Ceramic Society, 24 (2004) 3057–3062.
    3. S.P. Chaudhuri, S.K. Patra and A.K. Chakraborty,
    “Electrical resistivity of transition metal ion doped Mullite,” Journal of the European Ceramic Society, 19 (1999) 2941-2950.
    4. 王一峰(2002)“α- Al2O3微粉燒結行為的觀察”碩士論文,國
    立成功大學資源工程研究所。
    5. 張學明/簡文鎮/劉邦一(2002)“氫氧化鋁應用與分析技術”。
    6. 王木琴(2004)“奈米級富鋁紅柱石成長動力學研究”大漢技術學院。
    7. 行政院勞工委員會勞工安全衛生研究所(2001)“作業環境有害物暴露調查與對策技術資料(六) ”。
    8. Y.M. Chiang, D.P. Birnie and W.D. Kingery, “ Physical Ceramics Principles for Ceramic Science and Engineering,” John Wiley & Sons, (1988).
    9. 林國海(2005)“以水熱法探討奈米級α- Al2O3披覆氫氧基之研
    究”碩士論文,國立成功大學資源工程研究所。
    10. 邱昱維(2005)“α- Al2O3 粉末披覆γ-氨丙基三乙氧基矽烷耦合劑之研究”碩士論文,國立成功大學資源工程研究所。
    11. Amethyst Galleries, “ Mineral Gallery,” (2005).
    12. G.W. Morey, “ Hydrothermal Synthesis,” Journal of the American Ceramic Society, 36(1953), no.9 pp.279-285.
    13. K.G. Knauss, M.J. Dibley, W.L. Bourcier and H. F. Shaw, “Ti(IV)
    Hydrolysis Constants Derived from Rutile Solubility
    Measurements made from 100 to 300℃,”Applied Geochemistry,
    16(2001), pp.1115-1128.
    14. A. Rabenau, “The Role of Hydrothermal Synthesis in Preparative Chemistry,” Angewandte Chemie: International Edition in English, 24(1985), pp.1026-1040.
    15. D. Mishra, S.Ananda, R.K. Panda and R.P. Das,
    “ Synthesis of high-surface area Mn-doped barium hexa-aluminates by a combination of hydrothermal precipitation–calcination route,” Materials Chemistry and Physics, 82 (2003) 892–896.
    16. H. Yoshida, Y. Ikuhara, T. Sakuma, “ High temperature plastic deformation related to grain boundary chemistry in cation-doped alumina,” Materials Science and Engineering, A 387–389 (2004) 723–727.
    17. X. Bokhimi, J. SaHnchez-Valente and F. Pedraza, “ Crystallization of Sol–Gel Boehmite via Hydrothermal Annealing,” Journal of Solid State Chemistry, 166(2002), 182-190.
    18. D. Mishra, S. Anand, R.K. Panda, R.P. Das, “ Preparation of composite coating particles of α- Al2O3–SiO2 by heterogeneous nucleation-and-growth processing,” Materials Letters, 56 (2002) 446–449.
    19. Y.F. Tang, Z.D. Ling, Y.N. Lub, A.D. Li, H.Q. Ling, Y.J. Wang, Q.Y. Shao, “Study on the densification of composite coating particles of α- Al2O3–SiO2,” Materials Chemistry and Physics, 75 (2002) 265–269.
    20. T.R.N. Kutty, M. Nayak, “Photoluminescence of Eu2+-doped mullite (x Al2O3‧y SiO2; x y=3 2 and 2 1) prepared by a hydrothermal method,” Materials Chemistry and Physics, 65 (2000) 158–165.
    21. J. She, P. Mechnich, M. Schmucker, H. Schneider,
    “ Low-temperature reaction-sintering of mullite ceramics with an Y2O3 addition,” Ceramics International, 27 (2001) 847–852.
    22. “中粉体技” 期刊,中國科學技術協會發行,2001/12/18。
    23. Y.F. TANG, A.D. LI, “Fabrication of composite particles with core-shell structures by a novel processing,” Powder Technology, 160 (2005) 229 – 233.
    24. H.G. Wiedemann, “ Structuring and texturing aluminum oxides,” Thermochimica Acta, 318(1998)71-82.
    25. N.P. Bansal, D. Zhu, “ Thermal conductivity of zirconia–alumina composites,” Ceramics International, 31 (2005) 911–916.
    26. D. Mishra, S. Anand, R.K. Panda, R.P. Das, “Preparation of barium hexa-aluminate through a hydrothermal precipitation–calcination route and characterization of intermediate and final products,” Materials Letters, 56 (2002) 873– 879.
    27. T. Wang, R.L. Smith, H. Inomata, K. Arai, “ Reactive phase behavior of aluminum nitrate in high temperature and supercritical water,” Hydrometallurgy, 65 (2002) 159–175.
    28. B. Piriou, H. Rager, “Time-Resolved Fluorescence Spectroscopy of Cr3+ in Mullite,” Journal of Europan Ceramic Society, 16(1996)195-201.
    29. M. Zhou, J.M.F. Ferreira, “Hydrothermal Ageing Effects on the Coprecipitated Mullite-Alumina Composite Precursor,” Journal of Europan Ceramic Society, 17 (1997) 1539-1544.
    30. J.H. She, T. Ohji, P.Mechnich, M. Schmcker, H. Schneider,
    “ Mullitization and densification of Y2O3-doped reaction-bonded
    mullite ceramics with different compositions,” Materials
    Chemistry and Physics, 76 (2002) 88–91.
    31. L. Radonjic, L. Nikolic, “ Microstructural and sintering behavior of magnesia doped, seeded, different boehmite derived alumina,” Ceramics International, 25 (1999) 567±575.
    32. P. Tartaj, J. Tartaj, “ Preparation, characterization and sintering behavior of spherical iron oxide doped alumina particles,” Acta Materialia, 50 (2002) 5–12.
    33. R.I. Walton, “ Subcritical Solvothermal Synthesis of
    Condensed Inorganic materials,” Chemical Society Reviews,
    vol.31,pp. 230-238.

    下載圖示 校內:2007-08-24公開
    校外:2007-08-24公開
    QR CODE