簡易檢索 / 詳目顯示

研究生: 孫振堯
Sun, Chen-Yao
論文名稱: 具低線電壓調整率及低交互穩壓率之峰值電流模式控制單電感雙輸出降壓轉換器
Peak Current Mode Controlled Single-Inductor Dual-Output Buck Converter with Low Line and Cross Regulations
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 97
中文關鍵詞: 單電感雙輸出能量分配機制交互穩壓
外文關鍵詞: SIDO, Power distribution mechanism, Cross-regulation
相關次數: 點閱:137下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出以峰值電流模式控制之單電感雙輸出降壓型轉換器,峰值電流模式不僅降低了補償器設計之複雜度,同時增強轉換器之線電壓調節率及負載調節率。為了利於補償器設計,應用於單電感雙輸出降壓轉換器之電流控制模型必須詳加定義,因此本文探討操作於連續導通模式之單電感雙輸出降壓轉換器之時域及頻域模型;除此之外,此設計附加之相序切換機制可抑制能量分配法所帶來之交互穩壓的情形。
    本晶片實現於台灣積體電路公司0.35um 2P4M 3.3V混合訊號製程,尺寸為2.08×1.80 mm^2,轉換器輸入及輸出電壓分別設定為2.7~3.5V及1.5V/1.8V,總輸出最大功率為0.825W,實驗測試所得之線電壓調節率分別為0.0467%/0.0611%、自/互擾調節率為0.14、0.1/0.05、0.115 (mV/mA)。

    This thesis proposes a peak current-mode control on the single-inductor dual-output (SIDO) buck converter. The peak current-mode control topology not only reduces the complexity of the compensator design but also enhances the line/load regulation compared to that of the voltage-mode control. For the ease of compensator design, modeling of the current-mode control on the SIDO buck converter should be well defined. Therefore, this thesis elaborates the time domain and frequency domain characteristics of the SIDO buck converter as it operates in continuous conduction mode. In addition, phase sequence interchange (PSI) mechanism is supplemented to suppress the intrinsic cross-regulation that is induced by power distribution mechanism. The proposed converter was fabricated by using TSMC 0.35um 2P4M CMOS process. The chip size is 2.08×1.80 mm^2. The input voltage range is from 2.7V to 3.5V, two output voltages are set as 1.5V and 1.8V with its total maximum output power equal to 0.825W. Testing results show that measured line regulation, self-regulation and cross-regulation are 0.0467% and 0.0611%, 0.14 and 0.1, 0.05 and 0.115 (mV/mA), respectively.

    摘要 I Abstract II 誌謝 IV Contents V List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Thesis Organization 3 Chapter 2 Architecture of Single-Inductor Multiple-Outputs Converter 4 2.1 Power stage of SIMO/SIDO converter 4 2.2 Control methods of SIMO converter 6 2.2.1 Time-Multiplexing Control 6 2.2.2 Energy Conservation Mode Control 11 2.2.3 Power Distribution Control 13 Chapter 3 Analysis and Design of SIDO Buck Converter 18 3.1 Frequency Domain Analysis of SIDO Converter 18 3.1.1 Small-Signal Model of Voltage Mode Control SIDO Buck Converter in Continuous Conduction Mode 19 3.1.2 Small-Signal Model of Peak Current-Mode Control SIDO Buck Converter in Continuous Conduction Mode 32 3.1.3 Modeling Comparisons of Current Mode Control and Voltage Mode Control 39 3.2 Compensator Design 41 3.3 Phase Sequence Interchange Mechanism 45 Chapter 4 Circuit Implementation and Layout Considerations 48 4.1 System Architecture 48 4.2 Sub-circuits Implementation 49 4.2.1 Bias Circuit with Wide-Swing Cascode Current Mirror 49 4.2.2 Operational Transconductance Amplifier (OTA) 50 4.2.3 Two-Stage Operational Amplifier 52 4.2.4 Comparator 53 4.2.5 Ramp and Clock Oscillator [18] 54 4.2.6 Current Sensor and Voltage-to-Current Converter [19] 55 4.2.7 Soft-Start Circuit 57 4.2.8 Gate Driver with Dead-time 58 4.2.9 Phase Sequence Interchange Selector 60 4.2.10 PI Compensator Design 62 4.3 Layout Considerations 63 4.3.1 Power MOSFETs 63 4.3.2 Bond Wire Model 65 4.3.3 Floor Plan 65 Chapter 5 Simulation and Measurement Results 67 5.1 Simulation Results 67 5.1.1 Ramp and Clock Signals 67 5.1.2 Soft-Start Period 68 5.1.3 Inductor Current Sensor 69 5.1.4 Steady-State Condition 69 5.1.5 Line Regulation 70 5.1.6 Load Transient 71 5.1.7 Comparison of using PSI and Non-PSI 74 5.2 Measurement Results 76 5.2.1 Environment Setting for Measurement 76 5.2.2 Ramp and Clock Generator 79 5.2.3 Steady-state 79 5.2.4 Load Transient 82 5.2.5 Cross-Regulation 84 5.2.6 Line Transient and Regulation 87 5.2.7 System Efficiency 90 Chapter 6 Conclusions and Future Works 93 6.1 Conclusions 93 6.2 Future Works 94 Reference 95

    [1] J. M. Chang. and M. Pedram, "Energy Minimization Using Multiple Supply Voltages," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 5, pp. 436-443, 1997.
    [2] K. Usami, M. Igarashi, F. Minami, T. Ishikawa, M. Kanzawa, M. Ichida, et al., "Automated Low-Power Technique Exploiting Multiple Supply Voltages Applied to a Media Processor," IEEE Journal of Solid-State Circuits, vol. 33, pp. 463-472, 1998.
    [3] Y. T. Lee, C. L. Wei, and C. H. Chen, "An Integrated Step-Down DC-DC Converter with Low Output Voltage Ripple," in 2010 5th IEEE Conference on Industrial Electronics and Applications, 2010, pp. 1373-1378.
    [4] D. Kwon and G. A. Rincon-Mora, "Single-Inductor Multiple-Output Switching DC-DC Converters," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, pp. 614-618, 2009.
    [5] D. S. Ma, W. H. Ki, and C. Y. Tsui, "A Pseudo-CCM/DCM SIMO Switching Converter with Freewheel Switching," IEEE Journal of Solid-State Circuits, vol. 38, pp. 1007-1014, 2003.
    [6] D. S. Ma, W. H. Ki, C. Y. Tsui, and P. K. T. Mok, "Single-Inductor Multiple-Output Switching Converters with Time-Multiplexing Control in Discontinuous Conduction Mode," IEEE Journal of Solid-State Circuits, vol. 38, pp. 89-100, 2003.
    [7] Y. Zhang, R. Bondade, D. S. Ma, and S. Abedinpour, "An Integrated SIDO Boost Power Converter with Adaptive Freewheel Switching Technique," in 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 3516-3522.
    [8] Y. H. Lee, T. C. Huang, Y. Y. Yang, W. S. Chou, K. H. Chen, C. C. Huang, et al., "Minimized Transient and Steady-State Cross Regulation in 55-nm CMOS Single-Inductor Dual-Output (SIDO) Step-Down DC-DC Converter," IEEE Journal of Solid-State Circuits, vol. 46, pp. 2488-2499, 2011.
    [9] Y. H. Lee, Y. Y. Yang, S. J. Wang, K. H. Chen, Y. H. Lin, Y. K. Chen, et al., "Interleaving Energy-Conservation Mode (IECM) Control in Single-Inductor Dual-Output (SIDO) Step-Down Converters With 91% Peak Efficiency," IEEE Journal of Solid-State Circuits, vol. 46, pp. 904-915, 2011.
    [10] W. C. Chen, Y. P. Su, T. C. Huang, T. W. Tsai, R. H. Peng, K. L. Lin, et al., "Single-Inductor Quad-Output Switching Converter With Priority-Scheduled Program for Fast Transient Response and Unlimited Load Range in 40 nm CMOS Technology," IEEE Journal of Solid-State Circuits, vol. 50, pp. 1525-1539, 2015.
    [11] Y. P. Su, C. H. Lin, T. F. Yang, R. Y. Huang, W. C. Chen, K. H. Chen, et al., "CCM/GM Relative Skip Energy Control and Bidirectional Dynamic Slope Compensation in a Single-Inductor Multiple-Output DC-DC Converter for Wearable Device Power Solution," IEEE Transactions on Power Electronics, vol. 31, pp. 5871-5884, 2016.
    [12] H. P. Le, C. S. Chae, K. C. Lee, S. W. Wang, G. H. Cho, and G. H. Cho, "A Single-Inductor Switching DC-DC Converter With Five Outputs and Ordered Power-Distributive Control," IEEE Journal of Solid-State Circuits, vol. 42, pp. 2706-2714, 2007.
    [13] H. J. Wang and. L. R. Chang-Chien, "Low Cross Regulation Voltage-Mode Controlled Single-Inductor Dual-Outputs (SIDO) Voltage Regulator," in Future Energy Electronics Conference (IFEEC), 2013 1st International, 2013, pp. 149-154.
    [14] R. B. Ridley, "A New, Continuous-Time Model for Current-Mode Control," Power Electronics, IEEE Transactions on, vol. 6, pp. 271-280, 1991.
    [15] K.Y. Lin, C. S. Huang, D Chen., and K. H. Liu, "Modeling and Design of Feedback Loops for a Voltage-Mode Single-Inductor Dual-Output Buck Converter," in Power Electronics Specialists Conference, 2008. PESC 2008. IEEE, 2008, pp. 3389-3395.
    [16] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics: Springer Science & Business Media, 2007.
    [17] W. Xu, Y. Li, X. Gong, Z. Hong, and D. Killat, "A Dual-Mode Single-Inductor Dual-Output Switching Converter with Small Ripple," IEEE Transactions on Power Electron., vol. 25, no.3, pp. 614-623, Mar. 2010.
    [18] C. F. Lee and P. K. T. Mok, "A Monolithic Current-Mode CMOS DC-DC Converter with On-Chip Current-Sensing Technique," Solid-State Circuits, IEEE Journal of, vol. 39, pp. 3-14, 2004.
    [19] Y. H. Lee, S. C. Huang, S. W. Wang, and K. H. Chen, "Fast Transient (FT) Technique With Adaptive Phase Margin (APM) for Current Mode DC-DC Buck Converters," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, pp. 1781-1793, 2012.
    [20] R. A. Hastings, The art of analog layout: Prentice Hall, 2006.
    [21] M. H. Huang, Y. N. Tsai, Y. H. Lee, S. J. Wang, K.H. Chen, Y. H. Lin and G. K. Ma, "Sub-1V Input Single-Inductor Dual-Output (SIDO) DC-DC Converter with Adaptive Load-Tracking Control (ALTC) for Single-Cell-Powered System," IEEE Transactions on Power Electronics, vol. 25, no. 7, pp. 1713-1724, 2010.
    [22] W. Sun, C. Han, M. Yang, S. Xu and S. Lu, "A Ripple Control Dual-Mode Single-Inductor Dual-Output Buck Converter With Fast Transient Response," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 1, pp. 107-117, 2015.

    下載圖示 校內:2018-01-25公開
    校外:2020-01-25公開
    QR CODE