簡易檢索 / 詳目顯示

研究生: 陳泳丞
Chen, Yong-Cheng
論文名稱: 基於修正型ARMAX模型和OKID以適用於未知線性奇異系統之低階主動容錯型狀態空間自調式軌跡追蹤器
An Low-Order Active Fault-Tolerant State-Space Self-Tuner for Unknown Linear Singular System Using OKID and Modified ARMAX Model-Based System Identification
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 87
中文關鍵詞: 線性自迴歸移動平均模型觀測/卡曼濾波器鑑別狀態空間自調式奇異系統
外文關鍵詞: singular system, ARMAX, OKID, STC
相關次數: 點閱:125下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種基於修正型線性自迴歸移動平均模型和觀測/卡曼濾波器鑑別以適用於未知線性奇異系統之低階主動容錯型狀態空間自調式軌跡追蹤器。利用觀測/卡曼濾波器鑑別,可以得到修正型線性自迴歸移動平均模型之階數和優良的初始參數,並且利用此優良的初始參數可以改善鑑別的效率。用此可調整之修正型線性自迴歸移動平均系統鑑別模型,對取樣資料多變數線性奇異系統提出一個相符合的適應性數位控制方法,而且此線性奇異系統的系統參數未知和狀態不可得知。此外,將自調式控制的方法將以修改,發展出一種對未知多變數線性奇異系統的容錯控制法。當系統偵測到故障發生,藉著比較在卡曼濾波器估測演算法中的誤差值,一種量化準則被發展出來:權重矩陣重新設定技術對於故障系統之恢復而言,它是藉著調整和重新設定在卡曼濾波器估測演算法中用以估測參數的斜方差矩陣。因此,這方法可有效處理突發式和逐步式系統故障或控制器故障的情況。最後,有一個範例去證明提出之設計方法的有效性。

    An low-order active fault-tolerant state-space self-tuner for unknown linear singular system using observer/Kalman filter identification (OKID) and modified autoregressive moving average with exogenous input (ARMAX) model-based system identification is proposed in this thesis. Through OKID, to determination the order and a good initial guess of the modified ARMAX model can be obtained to improve the performance of the identification process. With the modified adjustable ARMAX-based system identification, a corresponding adaptive digital control scheme is proposed for the sampled-data multivariable linear singular system which has unknown system parameter and inaccessible system state. Besides, by modifying the conventional self-tuning control, a fault tolerant control scheme is also developed for the unknown multivariable singular system. For the detection of fault occurrence, a quantitative criterion is developed by comparing the innovation process errors estimated by the Kalman filter estimation algorithm, so that a resetting technique of the weighting matrix is developed by adjusting and resetting the covariance matrices of parameter estimation obtained by the Kalman filter estimation algorithm to improve the parameter estimation for faulty system recovery. The proposed method can effectively cope with partially abrupt and/or gradual system faults and/or input failure with fault detection. An illustrative example is given to demonstrate the effectiveness of the proposed design methodology.

    List of Contents 中文摘要 I Abstract II Acknowledgments III List of Contents IV List of Figures VI Chapter 1. Introduction 1-1 2. Novel Digital Tracker for Linear Singular Systems 2-1 3. Modified ARMAX Model-Based State-Space Self Tuning Control for the Linear Singular System 3-1 3.1 The Structure of the State-Space STC 3-2 3.2 Modified ARMAX Model for Self-Tuning Control Scheme 3-3 3.3 Preliminary of System Identification 3-5 3.4 State-Space Innovation Model 3-6 3.5 Initialization for Fast On-line System Identification and Observer for Unknown Linear Singular System 3-8 3.5.1 Modified ARMAX Model and State-Space Innovation Form 3-8 3.5.2 The Initial Parameters of ARMAX Model Based on OKID 3-11 4. Modified ARMAX Model-Based State-Space Self-Tuner for Unknown Linear Singular Systems with OKID-Estimated Initial Parameters 4-1 5. Self-Tuning Control With Fault Tolerance 5-1 5.1 Problem Statement 5-2 5.2 Modified Active Fault Tolerance 5-3 6. An Illustrative Example 6-1 6.1 Transform the Above Singular System to the Corresponding Regular System with a Direct Transmission Term from Input to Output 6-2 6.2 System Identification by Using RELS Method 6-7 6.3 Active Fault Tolerance Using Modified ARMAX Model-Based State-Space Self-Tuning Control 6-11 6.3.1 Determination of the Weighting Matrix 6-12 6.3.2 Modified ARMAX Model-Based State-Space Self-Tuning Control 6-13 6.3.3 Fault Scenario 1, an Abrupt Input Fault 6-14 6.3.4 Fault Scenario 2, a Gradual input Fault 6-15 7. Conclusions 7-1 Appendix A Singular System Descriptions A-1 Appendix B OKID Algorithm Descriptions B-1 Appendix C The Principal nth Root of a Matrix and the Associated Matrix Sector Function C-1 References R-1

    [1] J. S. H. Tsai, C. T. Wang, and L. S. Shieh, “Model conversion and digital redesign of singular systems,” Journal of Franklin Institute, vol. 330, pp. 1063-1086, 1993.
    [2] H. J. Wang, A. K. Xue, Y. F. Guo, and R. Q. Lu, “Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and
    distributed delays,” Journal of Zhejiang University-Science A, vol. 9, no. 4, pp.546-551, 2008.
    [3] B. G. Mertzios, M. A. Christodoulou, B. L. Syrmos, and F. L. Lewis, “Direct controllability a nd Observability time domain conditions of singular systems,” IEEE Transactions Automatic Control, vol. 33, no. 8, pp. 788-7 91, August 1988.
    [4] C. J. Wang and H. E. Liao, “Impulse observability and impulse controllability of linear time-varying singular systems,” Automatica, 37 (2001) 1867-1872.
    [5] K. Warwick, “Self-tuning regulators - a state-space approach,” International Journal of Control, vol. 33, pp. 839-858, 1981.
    [6] Y. T. Tsay and L. S. Shieh, “State-space approach for self-tuning feedback control with pole assignment,” IEE Proceeding D-Control Theory and Application, vol. 123, pp. 93-101, 1981.
    [7] L. S. Shieh, Y. L. Bao, and F. R. Chang, “State-space self-tuning regulators for general multivariable stochastic systems,” IEE Proceeding D-Control Theory and Application,
    vol. 136, pp. 17-27, 1989.
    [8] K. J. Äström and B. Wittenmark, Adaptive Control. NY: Addison-Wesley, 1989.
    [9] S. M. Guo, L. S. Shieh, G.. Chen, C. F. Lin, and J. Chandra, “State-space self-tuning control for nonlinear stochastic and chaotic hybrid system,” International Journal of Bifurcation and Chaos, vol.11, no. 4, pp. 1079-1113, 2001.
    [10] J. S. H. Tsai, Y. Y. Lee, P. Cofie, L. S. Shieh, and X. M. Chen, “Active fault tolerant control using state-space self-tuning control approach,” International Journal of Systems Science, vol. 37, no. 11, pp. 785-797, Sep. 2006.
    [11] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Trans. on Circuits and Systems, vol. 47, no. 11, pp. 1557-1570, 2000.
    [12] L. Ljung, System Identification Theory for the User, Englewood Cliffs. NJ: Prentice-Hall, 1987.
    [13] K. J. Äström and B. Wittenmark, Adaptive Control, NY: Addison-Wesley, 1989.
    [14] Landau, Ioan Dor’e System Identification and Control Design, Englewood Cliffs. NJ: Prentice-Hall, 1990.
    [15] L. Ljung and T. Söderström, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA, 1983.
    [16] L. S. Shieh, Y. L. Bao, and F. R. Chang, “State-space self-tuning regulators for general multivariable stochastic systems,” IEE Proceeding D-Control Theory and Application,
    vol. 136, pp. 17-27, 1989.
    [17] T. Kailath, “An innovation approach to least-squares estimation. Part I: Linear filtering in additive white noise,” IEEE Transactions on Automatic Control, vol. AC-13, pp. 646-655, 1968.
    [18] M. E. Polites, “Ideal state reconstructor for deterministic digital control systems,”International Journal of Control, vol. 49, pp. 2001-2011, 1989.
    [19] M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp.133-142, 1999.
    [20] Y. T. Tsay, L. S. Shieh, and S. Barnett, Structural Analysis and Design of Multivariable Control Systems: an Algebraic Approach. Berlin, Heidelberg: Springer-Verlag, 1988.
    [21] L. S. Shieh and Y. T. Tsay, “Transformations of a class of multivariable control systems to block companion forms,” IEEE Transactions on Automatic Control, vol. AC-27, pp.199-203 1982.
    [22] L. S. Shieh, C. T. Wang, and Y. T. Tsay, “Multivariable state feedback self-tuning controllers,” Stochastic Analysis and Applications, vol. 3, no. 2, pp. 189-212, 1985.
    [23] G.. G.. Yen and L. W. Ho, “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50, pp. 296-312,2003.
    [24] M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear
    systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp.133-142, 1999.
    [25] T. Soderstrom and P. Stoica, System Identification, Englewood Cliffs: Prentice-Hall,1989.
    [26] J. S. H. Tsai, Y. Y. Lee, P. Cofie, L. S. Shieh, and X. M. Chen, “Active fault tolerant control using state-space self-tuning control approach,” International Journal of Systems Science, vol. 37, no. 11, pp. 785-797, Sep. 2006.
    [27] B. G. Mertzios, M. A. Christodoulou, B. L. Syrmos, and F. L. Lewis, “Direct controllability and Observability time domain conditions of singular systems,” IEEE Transactions Automatic Control, vol. 33, no. 8, pp. 788-7 91, August 1988.
    [28] J. D. Roberts, “Linear model reduction and solution of the algebraic Riccati equation by use of the sign function,” International Journal Control, vol. 32, pp. 677-687, 1980.
    [29] H. J. Lee, J. B. Park, and Y. H. Joo, “An efficient observer-based sampled-data control: digital redesign approach,” IEEE Transaction Circuits and Systems-I: Fundamental Theory and Applications, vol. 50, no. 12, pp. 1595-1600, 2003.
    [30] L. S. Shieh, Y. T. Tsay, and R. E. Yates, “Some properties of matrix-sign functions derived from continued fractions,” IEE Proceedings D Control Theory and Applications, vol. 130, no. 3, pp.111-118, 1983.
    [31] F. R. Ganmacher, “The Theory of Matrices II.’ Chelsea, New York, 1974.
    [32] R. Nikoukhah, A. S. Willsky, and B. C. Levy, “Boundary-value descriptor systems:well-posedness, reachability and observability,” International Journal of
    Control, vol. 46, no. 5, pp. 1715-1737, 1987.
    [33] S. L. Campbell, Singular systems of differential equations II, Pitman, New York, 1982.
    [34] L. S. Shieh, Y. T. Tsay, and C. T. Wang, “Matrix sector functions and their applications to system theory,” IEE Proceedings D Control Theory and Applications, vol. 131, pp. 171-181, 1984.
    [35] J. S. H. Tsai, L. S. Shieh, and R. E. Yates, “Fast and stable algorithms for computing the principal nth root of a complex matrix and the matrix-sector function,” International Journal of Computers and Mathematics with Applications, vol. 15, no. 11, pp. 903-913, 1988.

    下載圖示 校內:2012-07-15公開
    校外:2012-07-15公開
    QR CODE