簡易檢索 / 詳目顯示

研究生: 張簡嘉壬
ChangChien, Jia-Ren
論文名稱: 採用新峰值量化演算法之嵌入式心電圖量測儀及其校正用ECG產生器
An Electrocardiogram Measurement Instrument Built on a SOC Embedded System Using a Peak Quantification Algorithm and an ECG Generator for Calibration
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 81
中文關鍵詞: 心率嵌入式系統心電圖
外文關鍵詞: Heart rate, Embedded system, Electrocardiogram
相關次數: 點閱:147下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要提出以SOC嵌入式系統建構一套可攜式心電圖量測儀. 文中將介紹一個新峰值定量演算法應用在心率檢測上。傳統心電圖量測往往需要藉由電腦或大型醫療儀器才能量測,然而這些醫療設備往往體積過大,攜帶不易。因此本文以嵌入式系統(Embedded System)為基礎架構下,提出一種新款式心電圖量測儀之設計概念。此系統以SOC及ECG檢測電路來完成一套即時、低成本與輕巧的心電圖量測儀。在心率檢測方面,實驗結果顯示誤差小於1 BPM。在心率小於 153 BPM以下,量測值與實際心跳值兩者之間的相關係數可達0.94。因此由實驗結果證明,新峰值量化演算法是可行的且具有高度準確性。
    此外,本文同時發展一套可規劃之心電圖產生器來模擬各種疾病之心電圖波形,並提供給心電圖儀做測試及校正使用。在數學演算法方面,本文主要改良由McSharry等人所提出的3組常微分程式,它可以藉由修正參數來決定一個心電圖波形的輪廓及產生的時間。本心電圖產生器,同時提供具ECG波形振幅、心率、QRS合成波的斜率等之可調性。心率可調範圍由20至176 BPM 之間,且振福在0.1-mV解析度下,可調整範圍由 0.1至400 mV之間。經試驗後,其實驗結果證明本文所提之系統是可行的。

    This paper reports on the new design and development of a handheld electrocardiogram (ECG) measurement instrument built on a system-on-chip (SOC) embedded system. A new approach using the peak quantification method (PQM) for measuring the human heart rate is also described. A computer, some medical equipment and other facilities are often required for conducting the traditional ECG measurements. However, the monitors of such instruments have some disadvantages, e.g., bulky, not very easy to transport, expensive, and so forth. Hence, we propose a new design for ECG measurement which is built on an embedded system. Our system adopts a SOC and ECG detection circuits to carry out a real-time, low-cost and compact ECG measurement system. Regarding heart rate computation, the experimental results show that the new PQM algorithm, when applied to heart rate measurements, yields error smaller than 1 BPM (beat per minute). The correlation coefficient between the measured and actual heartbeat can reach 0.94 when the heart rate is less than 153 BPM. It shows that the use of the new PQM algorithm gives an extremely high degree of accuracy.
    In addition, we report on the development of an accurate and programmable ECG generator that will provide ECG waveforms of different kinds of heart disease for the testing and calibration of electrocardiograph equipment. A modified mathematical model, developed from the three coupled ordinary differential equations of McSharry et al., was used to locate precisely the positions of the onset, termination, angle and duration of individual components in an ECG. Generator facilities are provided so the user can adjust the signal amplitude, heart rate, QRS-complex slopes, and P- and T-waves settings. The heart rate can be adjusted in increments of 1 BPM, from 20 to 176 BPM, while the amplitude of the ECG signal can be set from 0.1 to 400 mV with a 0.1-mV resolution. Experimental results show that the proposed concept and the resulting system are feasible.

    Abstract in Chinese................................................................................... I Abstract in English................................................................................... II Acknowledgement................................................................................... IV Contents................................................................................................... V List of Tables......................................................................................... VII List of Figures........................................................................................ VII CHAPTER 1 Introduction......................................................................................... 1 2 Physiological Signal Measurement Techniques................................. 4 2.1 Physiological Signal Measuring System.............................................. 4 2.1.1 PCG Detection and Measuring Circuit........................................ 6 2.1.2 ECG Detection and Measuring Circuit........................................ 7 2.1.3 Temperature Detection and Measuring Circuit............................. 8 2.1.4 PDA Measuring System Implementation................................... 12 2.1.5 Bluetooth Communication Flow Process.................................. 14 2.1.6 The GUI Design...................................................................... 16 2.1.7 The PDA Measuring Circuit..................................................... 18 2.1.8 The System Limits................................................................... 21 3 A New PQM Algorithm Built on a SOC Embedded System............ 23 3.1 The PQM Algorithm........................................................................ 23 3.2 SOC Embedded System Implementation.......................................... 28 3.2.1 The ARM SOC Processor....................................................... 30 3.2.2 The CPLD Chipset Design....................................................... 32 3.2.3 The System I/O Address Map.................................................. 36 3.3 Software Implementation and System Calibration.............................. 38 4 The ECG Generator Using a Dynamical Model Implemented on a Microcontroller 41 4.1 Normal ECG Complexes................................................................. 41 4.2 Dynamical ECG Algorithm............................................................... 43 4.3 ECG Generator Implementation....................................................... 47 4.4 Software Implementation................................................................. 56 5 Results and Discussion...................................................................... 57 5.1 SOC Embedded System.................................................................. 57 5.1.1 Clinical Testing........................................................................ 58 5.2 ECG Generator............................................................................... 62 6 Conclusion......................................................................................... 69 References............................................................................................... 71 VITA........................................................................................................ 80 List of Publications.................................................................................. 81

    [1] Silcott, G., Wilson, J., Peterson, N., Peisel, W. and Kroekar, K. L., 1999, SOCs drive new product development. IEEE Computer Society, 32, 61 – 66.
    [2] Hanna, D. M., Oakley, B. A. and Stryker, G. A., 2003, Using a system-on-a-chip implantable device to filter circulating infected cells in blood or lymph. IEEE Transactions on Nanobioscience, 2, 6 – 13.
    [3] Wang, L., Johannessen, E. A., Hammond, P. A., Cui, L., Reid, S. W. J., Cooper, J. M. and Cumming, D. R. S., 2005, A Programmable Microsystem Using System-on-Chip for Real-time Biotelemetry. IEEE Transactions on Biomedical Engineering, 52, 1251 – 1260.
    [4] Hammond, P. A., Ali, D. and Cumming, D. R. S., 2005, A system-on-chip digital pH meter for use in a wireless diagnostic capsule. IEEE Transactions on Biomedical Engineering, 52, 687 – 692.
    [5] Liu, Z. H., Dickson, K. and McCanny, J. V., 2005, Application-specific instruction set processor for SoC implementation of modern signal processing algorithms. IEEE Transactions on Circuits and Systems, 52, 755 – 765.
    [6] Clark, L. T., Hoffman, E. J., Miller, J., Biyani, M., Luyun, L., Strazdus, S., Morrow, M., Velarde, K. E. and Yarch, M. A., 2001, An embedded 32-b microprocessor core for low-power and high-performance applications. IEEE Journal of Solid-State Circuits, 36, 1599 – 1608.
    [7] Embedded System, http://members.fortunecity.com/cytunglo/os.htm
    [8] Game Boy Advance, http://www.nintendo.com
    [9] Nowka, K. J., Carpenter, G. D., MacDonald, E. W., Ngo, H. C., Brock, B. C., Ishii, K. I., Nguyen, T. Y. and Burns, J. L., 2002, A 32-bit PowerPC system-on-a-chip with support for dynamic voltage scaling and dynamic frequency scaling. IEEE Journal of Solid-State Circuits, 37, 1441 – 1447.
    [10] Wang, R. and Yang, S., 2004, The design of a rapid prototype platform for ARM based embedded system. IEEE Transactions on Consumer Electronics, 50, 746 – 751.
    [11] Software Liberty Association of Taiwan, http://www.slat.org/project
    [12] Wang, A. H., Lai, Y. Y. and Sun, C. T., 2005, Effects of Palm and WinCE menu-design for PDA on users' operating performance and subjective preference. Displays, 26, 97 – 102.
    [13] Koopman, P., 2004, Embedded system security. IEEE Computer Society, 37, 95 – 97.
    [14] Kandasamy, N., Hayes, J. P. and Murray, B. T., 2005, Dependable communication synthesis for distributed embedded systems. Reliability Engineering & System Safety, 89, 81 – 92.
    [15] Ciciora, W. S., 1994, Inside the set-top box. IEEE Spectrum, 32, 70 – 75.
    [16] Keates, S., 2004, Investigating the inclusivity of digital television set-top boxes. Lecture Notes in Computer Science, 3196, 340 – 359.
    [17] Cravotta, N., 2000, Global cable modem targets set-top boxes. EDN, 45, 15 – 15.
    [18] Bai, J., Zhang, Y., Shen, D., Wen, L., Ding, C., Cui, Z., Tian, F., Yu, B., Dai, B. and Zhang, J., 1999, A portable ECG and blood pressure telemonitoring system. IEEE Engineering in Medicine and Biology Magazine, 18, 63 – 70.
    [19] Halteren, A. V., Bults, R., Wac, K., Konstantas, D., Widya, I., Dokovsky, N., Koprinkov, G., Jones, V. and Herzog, R., 2004, Mobile patient monitoring: The MobiHealth system. The Journal on Information Technology in Healthcare, 2, 365 – 373.
    [20] Rodriguez, J., Goni, A. and Illarramendi, A., 2005, Real-time classification of ECGs on a PDA. IEEE Transactions on Information Technology in Biomedicine, 9, 23 – 34.
    [21] Sommers, D. R., Stubbs, D. D. and Hunt, W. D., 2004, A PDA-based wireless biosensor using industry standard components. IEEE Sensors Journal, 4, 551 – 558.
    [22] Swarts, J., 2005, PDAs in Medical Settings: The Importance of Organization in PDA Text Design. IEEE Transactions on Professional Communication, 48, 161 – 176.
    [23] Lin, Y. H., Jan, I. C., Ko, C. I., Chen, Y. Y., Wong, J. M. and Jan, G. J., 2004, A wireless PDA-based physiological monitoring system for patient transport. IEEE Transactions on Information Technology in Biomedicine, 8, 439 – 447.
    [24] Hu, W. C. and Chang, S. S., 2002, PDA Biosignal Acquisition System. Journal of Medical and Biological Engineering, 22, 69 – 79.
    [25] ARM Development Suite v1.2, http://www.arm.com
    [26] Huhta, J. C. and Webster, J. G., 1973, 60-Hz interference in electrocardiography. IEEE Transactions on Biomedical Engineering, 27, 91 – 101.
    [27] Iqbal, M. T., 2001, Analogue interface circuit for a PC's parallel port. Electronics World, 107, 710 – 710.
    [28] Sorokin, A. V., 2002, Instrument-to-PC interfacing using an enhanced parallel port. Instruments and Experimental Techniques, 45, 516 – 520.
    [29] Kay, A., 2002, Parallel port controls arbitrary-waveform generator. EDN, 47, 102 – 104.
    [30] Flaxer, E., 2003, Implementing of a precision fast thermoelectric cooler using a personal computer parallel port connection and ADN8830 controller. Review of Scientific Instruments, 74, 3862 – 3873.
    [31] Grill, W., 2004, Use a PC's parallel port to program a clock source. EDN, 49, 102 – 102.
    [32] Chuang, C. W. and Shiu, L. C., 2004, CPLD based DIVSC of hydraulic position control systems. Computers & Electrical Engineering, 30, 527 – 541.
    [33] Mappy VM SDK - Memory Layout, http://www.bottledlight.com
    [34] Navakatikyan, M. A., Barrett, C. J., Head, G. A., Ricketts, J. H. and Malpas, S. C., 2002, A Real-Time Algorithm for the Quantification of Blood Pressure Waveforms. IEEE Transactions on Biomedical Engineering, 49, 662 – 670.
    [35] Cheung, M. N., 1981, Detection of and recovery from errors in cardiac interbeat intervals. Psychophysiology, 18, 341 – 346.
    [36] Rompelman, O., 1986, Investigating heart rate variability: Problems and pitfalls. Cardiorespiratory and Cardiosomatic Psychophysiology, 114, 65 – 82.
    [37] Berntson, G. G., Quigley, K. S., Jang, J. F. and Boysen, S. T., 1990, An approach to artifact identification: Application to heart period data. Psychophysiology, 27, 586 – 598.
    [38] Porges, S. W. and Byrne, E. A., 1992, Research methods for measurement of heart rate and respiration. Biological Psychology, 34, 93 – 130.
    [39] Ruha, A., Sallinen, S. and Nissila, S., 1997, A real-time microprocessor QRS detector system with a 1-ms timing accuracy for the measurement of ambulatory HRV. IEEE Transactions on Biomedical Engineering, 44, 159 – 167.
    [40] Chang, S. H., Luo, C. H. and Yeh, T. L., 2004, An experimental design for quantification of cardiovascular responses to music stimuli in humans. Journal of Medical Engineering & Technology, 28, 157 – 166.
    [41] Buttfield, A. C. and Bolton, M. P., 2005, Real time measurement of RR intervals using a digital signal processor. Journal of Medical Engineering & Technology, 29, 8 – 13.
    [42] Friesen, G. M., Jannett, T. C., Jadallah, M. A., Yates, S. L., Quint, S. R. and Nagle, H. T., 1990, A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Biomedical Engineering, 37, 85 – 98.
    [43] Sun, Y., Suppappola, S. and Wrublewski, T. A., 1992, Microcontroller-based real-time QRS detection. Biomedical Instrumentation and Technology, 26, 477 – 484.
    [44] Gratze, G., Fortin, J., Holler, A., Grasenick, K., Pfurtscheller, G., Wach, P., Schonegger, J., Kotanko, P. and Skrabal, F., 1998, A software package for noninvasive, real-time beat-to-beat monitoring of stroke volume, blood pressure, total peripheral resistance and for assessment of autonomic function. Computers in Biology and Medicine, 28, 121–142.
    [45] Porges, S. W. and Byrne, E. A., 1992, Research methods for measurement of heart rate and respiration. Biological Psychology, 34, 93–130.
    [46] Jane, P., Blasi, A., Garci, J. and Laguna, P., 1997, Evaluation of an automatic threshold based detector of waveform limits in holter ECG with the QT database. Computers in Cardiology, 24, 295–298.
    [47] Stanley, G. B., Poolla, K. and Siegel, R. A., 2000, Threshold modeling of autonomic control of heart rate variability. IEEE Transactions on Biomedical Engineering, 47, 1147–1153.
    [48] Burke, M. J. and Nasor, M., 2001, An accurate programmable ECG simulator. Journal of Medical Engineering & Technology, 25, 97–102.
    [49] Sangiovanni Vincentelli, A. and Martin, G., 2001, Platform-based design and software design methodology for embedded systems. IEEE Design & Test of Computers, 18, 23–33.
    [50] Hui, N. J., Lih, T. C. and Jun, H. Y., 2005, An embedded system to support tele-medical activity. International Journal of Software Engineering and Knowledge Engineering, 18, 279–286.
    [51] Abdollahi, S. R., Bakkaloglu, B. and Hosseini, S. K., 2003, A fully digital numerical-controlled-oscillator. Integrated Circuit and System Design Lecture Notes in Computer Science, 2799, 389–398.
    [52] Migliaro, E. R., Canetti, R., Contreras, P., Hakas, M., Eirea, G. and Machado, A., 2004, Short-term studies of heart rate variability: comparison of two methods for recording. Physiological Measurement, 25, 15–20.
    [53] Jayapandian, J., 2004, Using a parallel port to measure resistance. Electronics World, 110, 24–24.
    [54] Chiarugi, F., Lombardi, D., Lees, P. J., Chronaki, C. E., Tsiknakis, M. and Orphanoudakis, S. C., 2002, Support of daily ECG procedures in a cardiology department via the integration of an existing clinical database and a commercial ECG management system. Annals of Noninvasive Electrocardiology, 7, 263 – 270.
    [55] Lutes, K., 2004, Software development for mobile computers. IEEE Pervasive Computing, 3, 10 – 14.
    [56] Batchvarov, V., Hnatkova, K. and Malik, M., 2002, Assessment of noise in digital electrocardiograms. Pacing and Clinical Electrophysiology, 25, 499 – 503.
    [57] Chang Chien J. R. and Tai C. C., 2006, An accurate programmable electrocardiogram generator using a dynamical model implemented on a microcontroller, American Institute of Physics, Rev. of Sci. Instrum. , 77, 075104(1 – 5)
    [58] Chang Chien J. R. and Tai C. C., 2006, A handheld electrocardiogram measurement instrument using a new pqm algorithm built on a soc embedded system, American Institute of Physics, Rev. of Sci. Instrum., 77 (Accepted)
    [59] Chang Chien J. R. and Tai C. C., 2005, A New Wireless-Type Physiological Signal Measuring System Using a PDA and The Bluetooth Technology, Biomedical Engineering – Applications, Basis, and Communication, 17, 229 – 235.
    [60] Chang Chien J. R. and Tai C. C., 2005, An Improved Peak Quantification Algorithm for Automatic Heart Rate Measurements, The 27th Annual International Conference of the IEEE Engineering in Medicine and Biology (IEEE EMBC05), 27, 6623 – 6626.
    [61] Chang Chien J. R. and Tai C. C., 2004, The Implementation of a Bluetooth-Based Wireless Phonocardio-Diagnosis System, IEEE ICNSC, 01, 171 – 172.
    [62] Chang Chien J. R. and Tai C. C., 2004, A Wireless Bluetooth Device Applied to a Non-contact Type Breathing Monitoring System, IEEE ICNSC, 01, 172 – 173.
    [63] Chang Chien J. R. and Tai C. C., 2004, The Information Home Appliance Control System-- A Bluetooth Universal Type Remote Controller, IEEE ICNSC, 01, 339 – 400.
    [64] Webster J. G. and Tompkins W. J., 1981, Design of microcomputer-based medical instrumentation, Prentice-Hall.
    [65] Soraghan J. J., Voukelatos S., and Boulo P., 1995, ECG signal compression using classified gain-shape vector quantization in the wavelet transform domain, Proceedings Computers in Cardiology, 373 – 376
    [66] Wei J. J., Chang C. J., Cho N. K., and Jan G. J., 2001, ECG data compression using truncated singular value decomposition, IEEE Transactions on Information Technology in Biomedicine, 5, 290 – 299.
    [67] Abenstein J. P. and Tompkins W. J., 1982, New data-reduction algorithm for real-time ECG analysis, IEEE Transactions on Biomedical Engineering, 29, 43 – 48.
    [68] Cox J. R., Nolle F. M., Fozzard H. A., and Oliver G. C., 1968, AZTEC, a preprocessing program for ECG rhythm analysis, IEEE Transactions on Biomedical Engineering, BME-15, 128 – 129.
    [69] Zhenyan J. and Shanxi D., 1998, A compression of ECG data based on neural network, Proceedings of the 1998 Dourth International Conference on Signal Processing, 2, 1654 – 1657
    [70] K. Fukunaga, Introduction to statistical pattern recognition, Academic Press, 1972.
    [71] Konstantinides K. and Natarajan B. K.,1994, An architecture for lossy compression of waveforms using piecewise-linear approximation, IEEE Transactions on Signal Processing, 42, 2449 – 2454.
    [72] Uyar K. and Ider Y. Z., 2001, Development of a compression algorithm suitable for exercise ECG data," Proceedings of the 23rd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society, 4, 3521 – 3524.
    [73] Abo-Zahhad M., Ahmed S. M., and Al-Shrouf A., 2000, Electrocardiogram data compression algorithm based on the linear prediction of the wavelet coefficients, Proceedings of the 7th International Conference on Electronics, Circuits and Systems, 1, 599 – 603.
    [74] Aydin M. C., Ceti A. E., and Koymen H., 1991, ECG data compression by sub-band coding," Electronic Letters, 27, 359 – 360.
    [75] Trahanias P. E.,1993, An approach to QRS complex detection using mathematical morphology, IEEE Transactions on Biomedical Engineering, 40, 201 – 205.

    下載圖示 校內:2007-11-23公開
    校外:2007-11-23公開
    QR CODE