簡易檢索 / 詳目顯示

研究生: 蕭蘊璇
Siow, Yin-Xuan
論文名稱: 振盪水柱波浪發電防波堤最佳化設計考量
Optimal design of oscillating water column wave energy caisson breakwater
指導教授: 郭玉樹
Kuo, Yu-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 88
中文關鍵詞: 振盪水柱波浪發電防波堤FLOW-3D發電效率
外文關鍵詞: FLOW-3D, Oscillating Water Column, Wave energy, breakwater
相關次數: 點閱:125下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 振盪水柱波浪發電系統為目前最廣泛的波能擷取系統之一。若能結合防波堤設置,可減少海底電纜之運用,也可方便日後之維修,並達到海洋能源開發功能多元化之目標。為了使振盪水柱波浪發電防波堤之能量擷取最大化,並滿足防波堤穩定性要求,本研究藉由數值模擬分析振盪水柱波浪發電防波堤在特定波浪條件下的水動力特性,以提出振盪水柱波浪發電防波堤的最佳化設計之建議。本研究參考鍾智印(2014)所建立之FLOW-3D數值模型設置方法及網格配置,模擬二維振盪水柱波浪發電防波堤氣室內水氣交互反應,以八種振盪水柱波浪發電防波堤幾何形狀,三組波高、六組週期之波浪條件,探討前牆沒水深度、氣室寬度、氣孔寬度以及波高對振盪水柱波浪發電防波堤氣室內之自由液面振盪、氣體流速、氣體壓力以及結構側向力之影響。本研究藉由分析波長比L/ lc'與波浪振幅放大率a/a0之關係,探討不同入射波條件進入不同幾何形狀之氣室時之自由液面振盪幅度。由模擬結果可知,波浪振幅放大率隨波長比增加。本研究透過數值模擬所得之氣室內空氣壓力與自由液面,計算八種振盪水柱波浪發電防波堤幾何形狀對氣動能擷取之影響。分析結果顯示,影響波能擷取效率之因素依序為氣孔寬度、波高、氣室寬度及前牆沒水深度。本研究分析各波浪發電系統於不同入射波條件與平均氣體能量功率之關係,顯示最佳能量擷取區間均落在波長比L/ lc'=5.4~6.6時。對於振盪水柱波浪發電防波堤之受力分析結果,本研究分別計算氣室在各牆面受波浪之側向力,進而得到不同幾何形狀之氣室於不同波浪條件下之總側向力及作用於防波堤基底合力矩。經比較出氣室寬度、氣孔寬度、前牆沒水深度及波高分別對結構物受側向力反應之影響。結果顯示,隨著波長比增加,不同幾何形狀振盪水柱波浪發電防波堤所受之最大側向合力及合力矩亦增加,直到波長比為6時,側向載重及基底合力矩增加幅度趨緩。其中,波高對結構物受力反應影響最劇烈,而氣孔之寬度對結構物受力反應影響最不顯著。最後,本研究提出振盪水柱波浪發電防波堤最佳化設計流程,並以花蓮港之浮標資料進行案例分析,得出若於花蓮港建制振盪水柱波浪發電,其平均氣體能量功率可達每單位公尺15.30W。

    Oscillating Water Column (OWC) device is one of the Wave power which is envisioned to be one of the major power generation sources developments in Taiwan. The advantages of the OWC device combined with caisson breakwater are easy communications and absence of mooring lines. FLOW-3D is utilized to simulate flow field, free surface, and pressure distribution in the air chamber of OWC devices and the effect of length of chamber, immersion depth of front wall, orifice width and wave height on the efficiency of wave energy extraction from the OWC and stability of structure is investigated in this study. The best range of energy extraction of OWC device is determined by wave length ratio-average pneumatic power curve as wave length ratio about 5.4~6.6. The order of factors affecting the wave energy extraction is orifice width, wave height, length of chamber and immersion depth of front wall. The order of factors affecting the stability of structure is wave height, length of chamber, immersion depth of front wall, and orifice width.

    摘要 I Extended Abstract II 誌謝 XIV 目錄 XV 圖目錄 XVIII 表目錄 XXII 符號說明 XXIII 第一章 前言 1 1-1 研究背景 1 1-2 研究動機與目的 1 1-3 研究方法 2 1-4 本文架構 2 第二章 振盪水柱防波堤效能評估 4 2-1 振盪水柱能量轉換過程 4 2-2 入射波能量評估 5 2-3 振盪水柱氣動能評估 6 2-4 水動力效能 (Hydrodynamic efficiency) 7 第三章 振盪水柱防波堤受力行為與效能 8 3-1 振盪水柱防波堤發電效能 9 3-2 振盪水柱防波堤波壓分佈及作用力 14 3-3 振盪水柱防波堤受力反應與氣動能反應關聯性 17 第四章 數值模型 19 4-1 FLOW-3D數值軟體之簡介 19 4-1-1 FLOW-3D數值模擬設置流程 19 4-1-1 FLOW-3D控制方程 21 4-1-2 FLOW-3D之紊流模式 22 4-1-3 FLOW-3D數值模型網格配置 23 4-1-4 FLOW-3D邊界條件 24 4-2 振盪水柱防波堤之模型尺寸 25 4-3 波浪條件 26 4-4 空水槽造波測試 27 4-5 模型校正 29 第五章 振盪水柱防波堤水動力及氣動力反應分析 33 5-1 水動力及氣動力反應 33 5-1-1 自由液面 33 5-1-2 速度場 35 5-1-3 渦度 38 5-1-4 空氣壓力 40 5-1-5 氣孔風速 42 5-2 結構物幾何形狀對氣體能量功率之影響 43 5-2-1 氣室寬度lc'對氣體能量功率之影響 43 5-2-2 氣孔寬度d' 對氣體能量功率之影響 48 5-2-3 面積比AR為定值時對氣體能量功率之影響 52 5-2-4 前牆沒水深度ls對氣體能量功率之影響 55 5-2-5 入射波高H對氣體能量功率之影響 58 5-3 依據振盪水柱防波堤水動力及氣動力反應之最佳化設計考量 61 第六章 振盪水柱防波堤穩定性分析 65 6-1 振盪水柱防波堤受力及彎矩 65 6-2 結構物幾何形狀對結構物穩定性之影響 68 6-2-1 氣室寬度lc' 對結構物穩定性之影響 68 6-2-2 氣孔寬度d' 對結構物穩定性之影響 70 6-2-3 面積比AR為定值時對結構物穩定性之影響 71 6-2-4 前牆沒水深度ls對結構物穩定性之影響 73 6-2-5 波高H對結構物穩定性之影響 75 6-3 依據振盪水柱防波堤之穩定性分析之最佳化設計考量 77 第七章 振盪水柱波浪發電防波堤最佳化設計 79 7-1 前牆沒水深度及氣室寬度對振盪水柱防波堤之影響 79 7-2 振盪水柱波浪發電防波堤最佳化設計流程 79 7-3 案例分析 82 第八章 結論與建議 84 8-1 結論 84 8-2 建議 86 參考文獻 87

    Brendmo, A., Falnes, J., and Lillebekken, P. M. (1996). “Lineår Modelling of Oscillating Water Columns Including Viscous Loss,” Applied Ocean Research, Vol. 18, No. 2–3, pp. 65-75.
    Evans, D. V., and Porter, R. (1995). “Hydrodynamic Characteristics of an Oscillating Water Column Device,” Applied Ocean Research, Vol. 17, No. 3, pp. 155-164.
    He, F., and Huang, Z. (2016). “Using an Oscillating Water Column Structure to Reduce Wave Reflection from a Vertical Wall,” Journal of Waterway Port Coastal and Ocean Engineering, Vol. 142, No. 2.
    Heath, T. V. (2012). “A Review of Oscillating Water Columns,” Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, Vol. 370, No. 1959, pp. 235-245.
    Huang, Y., Shi, H., Liu, D., and Liu, Z. (2010). “Study on the Breakwater Caisson as Oscillating Water Column Facility,” Journal of Ocean University of China (Oceanic and Coastal Sea Research), Vol. 9, No. 3, pp. 244-250.
    Jayakumar (1994). “Wave Force on Oscillating Water Column Type Wave Energy Caisson: an Experiment Study,” PhD, Indian Institute of Technology, Madras, India.
    Kamath, A., Bihs, H., and Arntsen, Ø. A. (2015). “Numerical Investigations of the Hydrodynamics of an Oscillating Water Column Device,” Ocean Engineering, Vol. 102, pp. 40 - 50.
    Kuo, Y. S., Lin, C. S., Chung, C. Y., and Wang, Y. K. (2015). “Wave Loading Distribution of Oscillating Water Column Caisson Breakwaters under Non-Breaking Wave Forces,” Journal of Marine Science and Technology-Taiwan, Vol. 23, No. 1, pp. 78-87.
    Liu, Y., Shi, H., Liu, Z., and Ma, Z. (2011). “Experiment Study on a New Designed OWC Caisson Breakwater,” Proceedings of the Power and Energy Engineering Conference (APPEEC), 2011 Asia-Pacific, pp. 1-5.
    Lopez, I., Pereiras, B., Castro, F., and Iglesias, G. (2014). “Optimisation of Turbine-Induced Damping for an OWC Wave Energy Converter using a RANS-VOF Numerical Model,” Applied Energy, Vol. 127, pp. 105-114.
    Michael T. Morris-Thomas, R. J. I., Krish P. Thiagarajan (2007). “An Investigation into the Hydrodynamic Efficiency of an Oscillating Water Column,” J. Offshore Mech. Arct. Eng, Vol. 129, No. 4, pp. 273-278.
    Muller, G. U., and Whittaker, T. J. T. (1993). “An Investigation of Breaking Wave Pressures on Inclined Walls,” Ocean Engineering, Vol. 20, No. 4, pp. 349-358.
    Ning, D. Z., Shi, J., Zou, Q. P., and Teng, B. (2015). “Investigation of Hydrodynamic Performance of an OWC (Oscillating Water Column) Wave Energy Device using a Fully Nonlinear HOBEM (Higher-Order Boundary Element Method),” Energy, Vol. 83, pp. 177-188.
    Sarmento, A., and Falcao, A. F. D. (1985). “Wave Generation by an Oscillating Surface-Pressure and its Application in Wave-Energy Extraction,” journal of fluid mechanics, Vol. 150, No. JAN, pp. 467-485.
    Sarmento, A. J. N. A. (1992). “Wave Flume Experiments on Two-Dimensional Oscillating Water Column Wave Energy Devices,” Experiments in Fluids, Vol. 12, No. 4-5, pp. 286-292.
    Teixeira, P. R. F., Davyt, D. P., Didier, E., and Ramalhais, R. (2013). “Numerical Simulation of an Oscillating Water Column Device using a Code based on Navier-Stokes Equations,” Energy, Vol. 61, pp. 513-530.
    Thiruvenkatasamy, K., Neelamani, S., and Sato, M. (2005). “Nonbreaking Wave Forces on Multiresonant Oscillating Water Column Wave Power Caisson Breakwater,” Journal of Waterway Port Coastal and Ocean Engineering-Asce, Vol. 131, No. 2, pp. 77-84.
    Wang, T. T., Siow, Y. X., Chen, C. Y., Kuo, Y. S. (2015) “Responses of Oscillating water column wave energy caisson breakwater of 2-D and 3-D model test,” Workshop for Marine Environment and Energy (EAWOMEN), 2015.
    Zhang, Y., Zou, Q.-P., and Greaves, D. (2012). “Air–Water Two-Phase Flow Modelling of Hydrodynamic Performance of an Oscillating Water Column Device,” Renewable Energy, Vol. 41, pp. 159-170.
    林啟聖 (2013). “振盪水柱波浪發電防波堤之波浪作用力分析,” 碩士, 國立成功大學。
    鍾智印 (2014). “振盪水柱波浪發電防波堤氣室反應數值模擬,” 碩士, 國立成功大學。
    許泰文 (2003).,近岸水動力學,中國土木水利工程學會。

    無法下載圖示 校內:2021-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE