簡易檢索 / 詳目顯示

研究生: 吳中閔
Wu, Chung-Min
論文名稱: 基於因果發現的股權市場傳染:重新審視全球危機
Equity Market Contagion in View of Causal Discovery: Reinvestigating the Global Crisis
指導教授: 林常青
Lin, Chang-Ching
學位類別: 碩士
Master
系所名稱: 社會科學院 - 經濟學系
Department of Economics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 75
中文關鍵詞: 全球危機股權市場一體化傳染性因果發現方法Granger 因果關係
外文關鍵詞: global crisis, equity market integration, contagion, causal discovery method, Granger causality
相關次數: 點閱:134下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統對於傳染的定義為危機期間跨國股權市場的相關性顯著增加。眾所皆知,相關不代表因果,我們認為股權市場之間的相關性增加,並不會給出任何傳染方向的資訊。比較許多關於傳染辯論的文章,我們使用因子模型並將傳染定義在無法解釋的因子負荷量與殘差的因果關係增加,藉此探討 2007 年次貸危機與 2019 年新型冠狀病毒 (COVID-19) 期間美國股市崩盤對跨國股市的傳染性。
    本論文的主要貢獻如下:首先,我們使用 ETF 來代表各國的股權市場,同時我們的結果可以明確的檢定國際多樣化在危機期間減少投資組合風險的有效性。其次,傳統衡量時間序列因果關係的迴歸分析普遍存在維度詛咒 (curse of dimensionality),我們使用 Runge (2020) 提出基於條件獨立的因果網路發現方法,作為第一個結合計量經濟學與近幾年很熱門的因果推論科學 (science of causal inference) 的跨領域應用。除了解決傳統計量經濟學在大數據時代所面臨的問題,同時可以很好的適應於複雜時間序列中特定落後期 (lag-specific) 與當期 (contemporaneous) 的因果網路發現。最後,我們設計線性迴歸的傳染性檢定模型,可適用於不同的全球危機,同時考慮波動傳遞的時變性 (time-varying) 可提供未來傳染性週期的研究。
    實證結果表明美國股市在次貸危機期間,對瑞典、比利時、奧地利、墨西哥與巴西具有傳染性,而在 COVID-19 期間,則是對日本、瑞典、瑞士與法國具有傳染性,但以上傳染效果都不大。但由於我們使用因果關係而不是相關性,本文結果可額外提供美國對跨國的傳染方向。

    This paper utilizes the definition of contagion as a significant increase in the “causality” rather than the “correlation” of cross-market co-movement during a crisis. We adopt the causal network discovery method based on conditional independence, PCMCI+, proposed by Runge (2020) to estimate the causality of the U.S. on global equity markets to discuss the U.S contagion of the financial crisis in 2007 and that of the COVID-19 in 2019. The empirical results show that the U.S. has a significant but modest contagion effect on the equity markets of Sweden, Belgium, Austria, Mexico, and Brazil respectively during the financial crisis in 2007 and on those of Japan, Sweden, Switzerland, and France during the COVID-19 in 2019. Additionally, this paper can determine the direction of contagion from the U.S. to global equity market with the usage of the causality rather than the correlation.

    中英文摘要 II 誌謝 VI 目錄 VII 表目錄 VIII 圖目錄 IX 壹、介紹 1 一、研究背景與動機 1 二、文獻探討 2 三、研究貢獻 6 四、研究架構 7 貳、因果網路發現方法 (PCMCI+) 8 一、時間序列圖 9 二、基於觀察資料的因果發現假設 11 三、從 Granger 因果關係到條件獨立性 13 參、研究資料 19 肆、實證架構 22 一、因子模型 22 二、PCMCI+ 演算法 24 三、傳染性檢定 28 伍、實證結果 32 一、2007 年次貸危機期間美國股市傳染性 32 二、2019 年 COVID-19 期間美國股市傳染性 42 陸、結論與討論 51 參考文獻 52 附錄 1、危機期間前後各國 ETF 的超額報酬敘述統計 56 附錄 2、危機期間美國股市傳染性 60

    Abdennadher, E. and S. Hellara (2018), “Causality and Contagion in Emerging Stock Markets,” Borsa Istanbul Review, 18: 4, 300-311.
    Barnett, L., A. B. Barrett and A. K. Seth (2009), “Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables,” Physical Review Letters, 103, p. 238701.
    Bekaert, G and C. R. Harvey (1995), “Time‐Varying World Market Integration,” Journal of Finance, 50: 2, 403-444.
    Bekaert, G., C. R. Harvey and A. Ng (2005), “Market Integration and Contagion,” Journal of Business, 78: 1, 39-70.
    Bekaert, G., M. Ehrmann, M. Fratzscher and A. Mehl (2014), “The Global Crisis and Equity Market Contagion,” Journal of Finance, 69: 6, 2597-2649.
    Bodart, V. and B. Candelon (2009), “Evidences of Interdependence and Contagion Using a Frequency Domain Framework,” Emerging Markets Review, 10: 2, 140-150.
    Breitung, J. and B. Candelon (2006), “Testing for Short and Long-Run Causality: A Frequency Domain Approach,” Journal of Econometrics, 132: 2, 363-378.
    Clausius, R. (1865), “Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie,” Annalen der Physik, 201: 7, 353-400.
    Colombo, D. and M. H. Maathuis (2014), “Order-Independent Constraint-Based Causal Structure Learning,” Journal of Machine Learning Research, 15: 116, 3921-3962.
    Eichler, M. (2012), “Graphical Modelling of Multivariate Time Series,” Probability Theory and Related Fields, 153, 233-268.
    Filardo, A., J. George, M. Loretan, G. Ma, A. Munro, I. Shim, P. Wooldridge, J. Yetman and H. Zhu (2010), “The International Financial Crisis: Timeline, Impact and Policy Responses in Asia and the Pacific,” Bank for International Settlements, eds., The international financial crisis and policy challenges in Asia and the Pacific, Basel: BIS Papers Press, 52, 21-82.
    Forbes, K. J. and R. Rigobon (2001), “Measuring Contagion: Conceptual and Empirical Issues,” in S. Claessens and K. J. Forbes, eds., International Financial Contagion, New York: Kluwer Academic Publishers Press, 43-66.
    Forbes, K. J. and R. Rigobon (2002), “No Contagion, Only Interdependence: Measuring Stock Market Comovements,” Journal of Finance, 57: 5, 2223-2261.
    Granger, C. W. J. (1969), “Investigating Causal Relations by Econometric Models and Cross-spectral Methods,” Econometrica, 37: 3, 424-438.
    Kalbaska A. and M. Gątkowski (2012), “Eurozone Sovereign Contagion: Evidence from the CDS Market (2005–2010),” Journal of Economic Behavior & Organization, 83: 3, 657-673.
    Meek, C. (1995), “Causal Inference and Causal Explanation with Background Knowledge,” P. Besnard and S. Hanks, eds., Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence, Montreal: AUAI Press, 403-410.
    Messerli, F. H. (2012), “Chocolate Consumption, Cognitive Function, and Nobel Laureates,” New England Journal of Medicine, 367, 1562-1564.
    Neaime, S. (2016), “Financial Crises and Contagion Vulnerability of MENA Stock Markets,” Emerging Markets Review, 27, 14-35.
    Pearl, J. (2000), Causality: Models, Reasoning and Inference, New York: Cambridge University Press.
    Pearl, J. (2018). “Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution,” Technical Report, R-475, 1-9.
    Pearl, J. and D. Mackenzie (2018), The Book of Why: The New Science of Cause and Effect, New York: Basic Books Press.
    Pompe, B. and J. Runge (2011), “Momentary Information Transfer as a Coupling Measure of Time Series,” Physical Review E, 83, p. 051122.
    Rasmussen, C. and C. Williams (2006), Gaussian Processes for Machine Learning, London: MIT Press.
    Runge, J. (2015), “Quantifying Information Transfer and Mediation Along Causal Pathways in Complex Systems,” Physical Review E, 92, p. 062829.
    Runge, J. (2018a), “Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation,” Chaos: An Interdisciplinary Journal of Nonlinear Science, 28, p. 075310.
    Runge, J. (2020), “Discovering Contemporaneous and Lagged Causal Relations in Autocorrelated Nonlinear Time Series Datasets,” in D. Sontag and J. Peters, eds., Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI), Toronto: PMLR Press, 124, 1388-1397.
    Runge, J. (2018b), “Conditional Independence Testing Based on a Nearest-neighbor Estimator of Conditional Mutual Information,” A. Storkey and F. Perez-Cruz, eds., Proceedings of the 21st International Conference on Artificial Intelligence and Statistics, Playa Blanca, Lanzarote, Canary Islands: PMLR Press, 84, 938-947.
    Runge, J., J. Heitzig, N. Marwan and J. Kurths (2012a), “Quantifying Causal Coupling Strength: A Lag-specific Measure for Multivariate Time Series Related to Transfer Entropy,” Physical Review E, 86, p. 061121.
    Runge, J., j. Heitzig, V. Petoukhov and J. Kurths (2012b), “Escaping the Curse of Dimensionality in Estimating Multivariate Transfer Entropy,” Physical Review Letters, 108, p. 258701.
    Runge, J., P. Nowack, M. Kretschmer, S. Flaxman and D. Sejdinovic (2019), “Detecting and Quantifying Causal Associations in Large Nonlinear Time Series Datasets,” Science Advances, 5: 11, p. eaau4996.
    Sander, H. and S. Kleimeier (2003), “Contagion and Causality: An Empirical Investigation of Four Asian Crisis Episodes,” Journal of International Financial Markets, Institutions and Money, 13: 2, 171-186.
    Schreiber, T. (2000), “Measuring Information Transfer,” Physical Review Letters, 85: 2, 461-464.
    Shannon , C. E. (1948), “A Mathematical Theory of Communication,” Bell System Technical Journal, 27: 3, 379-423.
    Sims, C. A. (1980), “Macroeconomics and Reality,” Econometrica, 48: 1, 1-48.
    Spirtes, P., C. N. Glymour, R. Scheines and D. Heckerman (2000), Causation, Prediction, and Search, London: MIT Press.
    Székely, G. J., M. L. Rizzo and N. K. Bakirov (2007), “Measuring and Testing Dependence by Correlation of Distances,” Annals of Statistics, 35: 6, 2769-2794.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE