簡易檢索 / 詳目顯示

研究生: 何仕偉
Ho, Shr-Wei
論文名稱: 多天線系統中使用選擇性變異數之疊代軟式干擾消除
Iterative Soft-decision Interference Cancellation Using Selective Variance for Multiple Antenna System
指導教授: 謝明得
Shieh, Ming-Der
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 49
中文關鍵詞: 疊代軟式干擾消除多天線干擾
外文關鍵詞: soft interference cancellation, iterative, multiple antenna interference
相關次數: 點閱:121下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現代無線通訊系統中,多天線是一個用來提高傳輸速率的關鍵技術。在常發生散射的環境中,傳送端與接收端之間並不存在能視線所及的路徑,接收端收到的訊號在這些路徑中會受到反射、散射、繞射的影響,造成接收天線之間的干擾。為了要改善多天線干擾對系統效能的影響,疊代軟式干擾消除(Iterative soft-decision interference cancellation, ISIC)方法結合了連續干擾消除與渦輪解碼器的協同設計已吸引不少關注,如何克服因錯誤傳遞(Error propagation)而降低了疊代軟式干擾消除的效能,是一個重要的議題。
    在本論文中,我們首先提出一個可在每次疊代中調整干擾消除順序的疊代軟式干擾消除法來降低錯誤傳遞發生的機率,其干擾消除的順序是由前一次疊代的變異數升序來決定;接著提出簡化的對數最大事後機率解(Log-MAP)演算法,可透過累積每一次疊代的軟式資訊(Soft information)來加速收斂速度;最後提出一個低複雜度的疊代QR分解來降低改變干擾消除順序的額外付出,在4×4系統下透過複雜度分析使用4次疊代運算時約可降低35%的執行時間,本論文所提出的方法使用4次疊代運算約能增加0.9dB的系統效能。

    Multiple antenna technique is one of the key technologies in modern wireless communication systems to increase transmission rate. In rich scattering environment, there is no clear line-of-sight (LOS) path between transmitter and receiver. The signals in these environments are reflected, scattered or diffracted among multiple paths before being received at the receiver, which may interfere other receiving antennas and causing multiple antenna interference. In order to limit the impact of multiple antenna interference on system performance, an iterative soft-decision interference cancellation (ISIC) method was presented to mitigate interference by using a combination of a successive interference cancellation and a turbo decoder. However, error propagation is a source of performance degradation in the ISIC scheme.
    In this thesis, a modified ISIC scheme is proposed to reduce the probability of error propagation with an adjustable cancellation order in each iteration. The cancellation order is decided by ascending variance values from the previous iteration. To increase system convergence speed, an accumulated max-log-MAP algorithm is presented to accumulate soft information over iterations. Furthermore, a low-complexity iterative QR decomposition method is proposed to reduce the effort of changing the cancellation order. In the complexity analysis, the overall execution time is reduced by about 35% in a 4×4 system using 4 iterations. Compared to the ISIC scheme, the modified scheme can obtain 0.9dB performance gain in a 4×4 system with 4 iterations.

    摘要 i Abstract ii 致謝 iv Contents v List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 Research Motivation 1 1.2 Thesis Organization 2 Chapter 2 Background 3 2.1 Multiple antenna system model 3 2.2 Linear detector with interference cancellation 5 2.2.1 Linear Detector and sorted QR decomposition 5 2.2.2 Successive interference cancellation 8 2.2.3 Parallel interference cancellation 10 2.3 Iterative detection and decoding system 11 2.3.1 Log-likelihood Ratio (LLR) computation 12 2.3.2 Searched node reduction strategy 14 2.3.3 Iterative Soft-decision interference cancellation (ISIC) 17 Chapter 3 Variance-sorting based iterative soft-decision interference cancellation 21 3.1 Cancellation order effect in ISIC 22 3.2 Proposed high-reliability and low-complexity soft-decision interference cancellation 23 3.2.1 Proposed variance-sorting based ISIC 23 3.2.2 Accumulated max-log-MAP algorithm 27 3.2.3 Modified QR decomposition 30 3.3 EXIT chart analysis 33 3.3.1 Transfer characteristics between iterative interference cancellation and decoder 33 3.3.2 EXIT charts based on different iteration numbers 36 Chapter 4 Performance results and complexity analysis 38 4.1 Simulation results and comparisons 38 4.1.1 Simulation environment 38 4.1.2 Bit error rate (BER) performance analysis 38 4.2 Computational complexity analysis 42 Chapter 5 Conclusions and future work 44 5.1 Conclusions 44 5.2 Future work 45 Bibliography 46

    [1] M. Latva-aho, J. Lilleberg, “Parallel interference cancellation in multiuser detection”, Proc. IEEE 4th ISSSTA’96, vol. 3, pp. 1151-1155, Sep. 1996.
    [2] M. K. Varanasi and B. Aazhang, “Multistage detection in asynchronous code division multiple access communications,” in Proc. IEEE Trans. Commun., vol. 38, pp. 509-519, Apr. 1990.
    [3] R. Kohno, H. Imai, M. Hatori, and.S. Pasupathy. “Combination of an adaptive array antenna and a canceller of interference for direct-sequence spread-spectrum multiple-access system,” in Proc. IEEE J. Sel. Areas Commun., vol. 8, no. 4, pp. 675-682, May 1990.
    [4] J. M. Holtzman, “DS/CDMA successive interference cancellation,” in Proc. IEEE ISSSTA’94, vol. 1, pp. 69-78, July 1994.
    [5] A. Gersho and T. L. Lim, “Adaptive cancellation of intersymbol interference for data transmission,” in Proc. Bell Systems Technical Journal, vol. 60, pp. 1997-2021, Apr. 1981.
    [6] W. Choi, K. Cheong and J. Cioffi, “Iterative soft interference cancellation for multiple antenna systems,” in Proc. Wireless Communications and Networking Conf. (WCNC), pp. 304–309, Sep. 2000.
    [7] S. Pfletschinger and M. Navarro, “A low-complexity MIMO system with soft interference mitigation,” in Proc. IEEE GLOBECOM’04, vol. 1, pp. 396-400, Dec. 2004.
    [8] J. Nam, S. R. Kim, J. Ha and J. Y. Ahn, “A new design of iterative detection and decoding with soft interference cancellation,” in Proc. IEEE Vehicular Technology Conference(VTC), pp. 1-6, Sep. 2008.
    [9] Z. Luo and F. Yang, “Enhanced soft interference cancellation algorithm for V-BLAST systems,” in Proc. IEEE GLOBECOM’08, pp. 1-5, Nov. 2008.
    [10] X. Wang and H. V. Poor, “Iterative (Turbo) soft interference cancellation and decoding for coded CDMA,” in Proc. IEEE Trans. Commun., vol. 47, pp. 1046- 1061, July 1999.
    [11] J.C. Koshy, “Low complexity iterative MIMO receiver based on successive soft interference-cancellation and MMSE spatial-filtering,” in Proc. IEEE Sarnoff Symposium, pp.1-6, Apr. 2010.
    [12] S. Bittner, E. Zimmermann and G. Fettweis, “Low complexity soft interference cancellation for MIMO-systems,” in Proc. Vehicular Technology Conference(VTC), pp. 1993–1997, May 2006.
    [13] W. B. Tang, Y. L. Zhou and S. Q. Li, “MMSE iterative soft interference cancellation algorithm using transmit power allocation scheme in V-BLAST system,” in Proc. International Conference on Communications, Circuits and Systems(ICCCAS), vol. 1, pp. 462-466, May 2005.
    [14] Kyung-Tae Sun, “Selective detection in an iterative soft-interference cancellation receiver,” in Proc. Asia-Pacific Conference Communications(APOC), pp. 1005-1008, Oct. 2005.
    [15] L. G. Barbero and J. S. Thompson, “A fixed-complexity MIMO detector based on the complex sphere decoder,” in Proc. IEEE Workshop Signal Processing Advances in Wireless Commun. (SPAWC’06), vol. 1, pp. 1-5, July 2006.
    [16] H. Kwon, J. Lee, I. Kang, “Successive interference cancellation via rank-reduced maximum a posteriori detection,” in Proc. IEEE Trans. Commun., vol. 61, no. 2, pp. 628-637, Feb. 2013.
    [17] B. Hochwald and S. Brink, “Achieving near-capacity on a multiple-antenna channel,” in Proc. IEEE Trans. On Commun., vol. 51, no. 3, pp. 389-399, Mar. 2003.
    [18] P. Robertson, E. Villebrun and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. IEEE ICC- 95, pp. 1009-1013, June 1995.
    [19] J. Hagenauer, E. offer and L. Papke, “Iterative decoding of binary block and convolution codes,” in Proc. IEEE Trans. Inf. Theory, vol. 42, pp. 429-445, Mar. 1996.
    [20] D. Wubben, R. Bohnke, V. Kuhn and K. D. Kammeyer, “MMSE extension of V-BLAST based on sorted QR decomposition,” in Proc. Vehicular Technology Conference(VTC), vol. 1, pp. 508-512, Oct. 2013.
    [21] E. Zimmermann, S. Bittner, and G. Fettweis, “Complexity reduction in iterative MIMO receivers based on EXIT chart analysis,” in Proc. 4th Int. Sym. Turbo Codes&Related Topics; 6th Int. ITG-Conf. Source and Channel Coding (TURBOCODING’06), Apr. 2006, pp. 1-6.
    [22] M. El-Khamy, L. Jungwon, and K. Inyupg, “Soft turbo HARQ combining,” in Proc. IEEE Int. Conf. Commun. (ICC’13), June 2013, pp. 5542-5547.
    [23] S. ten Brink, “Designing iterative decoding schemes with the extrinsic information transfer chart,” in Proc. AEÜ, Int. J. Electron. Commun., vol. 54, no. 6, pp. 389-398, Nov. 2000.
    [24] J. Hagenauer, “The EXIT chart - Introduction to extrinsic information transfer in iterative processing,” in Proc. Eur. Signal Process. Conf., pp. 1541–154, Sep. 2004.
    [25] D. Scott, “On optimal and data-based histograms,” Biometrika, vol. 66, no. 3, pp. 605-610, 1979.
    [26] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” in Proc. IEEE Trans. Commun., vol. 52, pp.670-678, Apr. 2004.
    [27] R. G. Maunder, “Rob Maunder's wireless communications research pages Matlab EXIT charts,” Internet: users.ecs.soton.ac.uk/rm/resources/matlabexit, May 20, 2014.
    [28] Junqiang Li, Khaled Ben Letaief and Zhigang Cao, “Co-channel interference cancellation for space-time coded OFDM systems,” in Proc. IEEE Trans. Wireless Commun., vol. 2, no. 1, pp. 41-49, Jan. 2003.
    [29] Li Guo and Yih-Fang Huang, “Interference suppression for multiuser downlink transmission in frequency-selective fading channels,” in Proc. IEEE Trans. Signal Process., vol. 56, no. 9, pp. 4386-4397, Sep. 2008.
    [30] P. Xiao, Z. Lin, W. Yin and C. Cowan, “Suboptimal and optimal MIMO-OFDM iterative detection schemes,” in Proc. IEEE GLOBECOM’10, pp. 1-5, Dec. 2010.

    下載圖示 校內:2018-08-26公開
    校外:2020-08-26公開
    QR CODE