簡易檢索 / 詳目顯示

研究生: 潘建亮
Pan, Jian-Liang
論文名稱: 固定化盤尼西林去醯基酵素反應動力學 建模及其兩水相系統分離反應之探討
Investigation of the Enzymatic Kinetic Model of Immobilized Penicillin G Acylase Reaction and the Partition/Reaction in Aqueous Two-Phase System
指導教授: 許梅娟
none
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 177
中文關鍵詞: 兩水相聚乙二醇對酵素之抑制機制水解反應動力學抑制機制反應速率式
外文關鍵詞: aqueous two-phase system., polyethylene glycol (PEG), polyethylene glycol inhibition mechanism, product inhibition mechanism, hydrolysis kinetics, PGA velocity model, penicillin G acylase (PGA)
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
      本文的研究是以Ceph-G為基質,利用固定化酵素penicillin G acylase進行水解反應,水解產物為7-ADCA與PAA。主要可分為三部分,一是探討固定化penicillin G acylase (PGA) 酵素水解cephalosporin G的水解反應動力學;二是添加PEG對酵素水解動力學的影響;三是探討PEG與鹽類所形成的兩水相系統對cephalosporin G與其水解產物7-ADCA與PAA分配係數的影響。
      酵素動力學主要在探討溫度、酸鹼值及添加7-ADCA與PAA對酵素反應的影響。由不同的反應溫度觀察初始速率 Vi、轉化率XA、比速率V/Vi、比速率常數ksv、失活常數kd、活化能Ea、熱失活活化能 (Ea)TD、比速率常數活化能 (Ea)sv、失活能Ed、熱力學性質 (ΔH、ΔS、與ΔG)、Km與Vm之變化。由不同的酸鹼值觀察初始速率 Vi、轉化率XA、比速率常數ksv、Km、Vm與於不同基質濃度下反應之影響。由添加7-ADCA、PAA與不同的基質濃度對酵素反應的影響,以Lineweaver-Burk圖解法求出7-ADCA、PAA與Ceph-G對酵素之抑制機制並導出penicillin G acylase水解反應速率式,以此速率式求各抑制參數 (KiA、KiP與KiS)。
      PEG對酵素水解動力學的影響主要在探討添加不同PEG之活化能Ea、失活常數kd、失活能Ed、熱力學性質 (ΔH、ΔS、與ΔG)、不同基質濃度下之活化能Ea、Km與Vm之變化。以Lineweaver-Burk圖解法求出PEG對酵素之抑制機制並導出PEG影響penicillin G acylase水解反應之速率式,以此速率式求PEG抑制參數KiPEG。
      兩水相系統主要在探討PEG與鹽類所形成的兩水相系統對cephalosporin G與其水解產物7-ADCA與PAA分配係數的影響。觀察改變PEG與鹽類濃度、體積比Vt / Vb、pH值、添加電解質對分配係數K、上層產率Yt、下層產率Yb、7-ADCA之分離係數 gA 與Ceph-G之分離係數 gC 的影響,尋求一最佳兩水相組成,以利酵素於兩水相進行水解反應時水解產物的初步純化。

    Abstract
     In this study, cephalosporin G (Ceph-G) as the substrate was hydrolyzed by penicillin G acylase. Its hydrolyzed products are 7-aminodesacetylcephalosporanic acid (7-ADCA) and phenylacetic acid (PAA). The research work can be concluded into three parts: the kinetic study of cephalosporin hydrolysis by penicillin G acylase; the effect of adding polyethylene glycol (PEG) on the hydrolysis reaction of PGA; and the effect of aqueous two-phase system composed of different polyethylene glycols and different salts, respectively, on the partition coefficient of 7-ADCA, PAA and Ceph-G..
     The factors affecting the kinetics of PGA are temperature, pH, 7-ADCA and PAA. Variations of initial rate (Vi), conversion of 7-ADCA (XA), specific velocity (V/Vi), rate constant of specific velocity (ksv), deactivation rate constant (kd), activation energy (Ea), activation energy of thermal denature ((Ea)TD), energy of specific velocity ((Ea)sv), thermal deactivation energy (Ed), thermodynamic properties (ΔH, ΔS and ΔG) and kinetics constant (Km and Vm) obtained from different temperatures and pH were all investigated. The inhibition mechanism was estimated from a Lineweaver-Burk plot by adding different amounts of 7-ADCA and PAA. The PGA velocity model was determined taken into consideration of the inhibition mechanism of both 7-ADCA and PAA. The inhibition constants (KiA, KiP and KiS) were also calculated.
     Different concentrations of polyethylene glycols were applied to the PGA catalyzed reaction of cephalosporin G and the influence on the parameters such as activation energy (Ea), deactivation rate constant (kd), thermal deactivation energy (Ed), thermodynamic properties (ΔH, ΔS and ΔG) and kinetics constant (Km and Vm) were all discussed. The inhibition mechanism was estimated from a Lineweaver-Burk plot by adding different concentrations of polyethylene glycol. Similarly, the PGA velocity model was established from considering the inhibition mechanism of polyethylene glycol. The inhibition constants (KiPEG) were also calculated.
     The partition coefficients (K7-ADCA, KPAA and KCeph-G.) were obtained from the aqueous two-phase systems composed of different polyethylene glycols and different salts. The experimental results obtained from different concentrations of polyethylene glycols and salts, volume ratio (Vt/Vb), pH or variations of the partition coefficient by adding an electrolyte, yield in the top phase (Yt), yield in the bottom phase (Yb), 7-ADCA separation coefficient (gA) and Ceph-G separation coefficient (gC) were helpful to search for an aqueous two-phase system of optimum composition. Thus, the purification of Ceph-G hydrolyzed by PGA in an aqueous two-phase system could be successfully performed.

    總目錄 中文摘要 I 英文摘要 II 誌謝 IV 總目錄 VI 圖目錄 IX 表目錄 XII 符號說明 XIII 第一章 緒論 1 1-1 前言 1 1-2 b-lactam環抗生素的簡介 2 1-2-1 Cephalosporins 4 1-3 酵素簡介 7 1-3-1 青黴素醯胺酶Penicillin acylase (Penicillin amidase) 8 1-3-2 Penicillin acylase之分子結構 9 1-3-3 Penicillin acylase之純化與分析 10 1-3-4 Penicillin acylase的性質 13 1-3-5 Penicillin acylase之固定化與應用 17 1-3-6 Penicillin acylase之動力學 25 1-4 兩水相 26 1-5 研究動機與目的 29 第二章 實驗方法、藥品、儀器與原理 30 2-1 實驗方法 30 2-1-1 固定化Penicillin G acylase酵素反應 30 2-1-1-1 固定化Penicillin G acylase酵素之活性分析 30 2-1-1-2 不同時間下酵素轉化率的量測 31 2-1-1-3 不同溫度下失活速率常數的量測 31 2-1-1-4 抑制係數的量測 31 2-1-2 兩水相 32 2-1-2-1 兩水相參數的定義 32 2-1-2-2 兩水相製備 32 2-1-2-3 不同溫度下添加PEG之失活速率常數量測 32 2-1-2-4 PEG抑制係數的量測 33 2-1-2-5 PEG與鹽類兩水相係統 33 2-1-2-6 添加電解質對分配係數的影響 33 2-2 實驗藥品 39 2-3 實驗儀器 41 2-4 動力學與兩水相理論 43 2-4-1 動力學理論 43 2-4-2 兩水相理論 49 第三章 PGA酵素動力學之結果與討論 52 3-1 Penicillin G acylase之反應機構 52 3-2 Penicillin G acylase酵素之基本性質 54 3-3 Penicillin G acylase穩定性之探討 56 3-4 溫度之影響 60 3-4-1 Penicillin acylase酵素之最適溫度與活化能 60 3-4-2 不同溫度對反應速率之影響 61 3-4-3 不同溫度之初始速率 62 3-4-4 溫度影響活性衰退之探討 62 3-4-5 溫度影響Vm、Km與熱力學性質之探討 64 3-5 pH值之影響 75 3-5-1 最適pH值 75 3-5-2 不同基質濃度與不同pH值之影響 75 3-5-3 不同pH值之動力學探討 77 3-6 固定化Penicillin G acylase酵素之動力學探討 87 3-6-1 添加7-ADCA或PAA之影響 87 3-6-2 同時添加7-ADCA與6-PAA之影響 87 3-6-3 反應速率模式 88 3-6-4 動力學參數 90 3-6-4-1 Ceph-G之抑制係數KiS 90 3-6-4-2 PAA與7-ADCA之抑制係數KiP、KiA 91 第四章 兩水相之結果與討論 102 4-1 PEG動力學之探討 102 4-1-1 PEG對PGA活性影響之探討 102 4-1-2 PEG對PGA動力學參數之探討 102 4-1-3 溫度因素於不同PEG對PGA酵素動力學之探討 103 4-1-3-1 不同溫度下添加PEG對酵素Km與Vm的影響 103 4-1-3-2 添加PEG對kd、t1/2與Ed的影響 104 4-1-3-3 添加PEG對PGA酵素反應熱力學性質的探討 105 4-2 兩水相成份的探討 120 4-2-1 K2HPO4、(NH4)2SO4與PEG兩水相系統 120 4-2-2 MgSO4與PEG兩水相系統 121 4-3 體積比的影響 139 4-3-1 PEG4000與K2HPO4、(NH4)2SO4或MgSO4兩水相之Vt與Vb變化 139 4-3-2 改變兩水相之Vt / Vb對分配係數、Yt與Yb之影響 139 4-4 pH值的影響 148 4-5 添加電解質的影響 154 4-5-1 添加電解質對PEG4000與K2HPO4兩水相系統的影響 154 4-5-1-1 添加不同硫酸根離子化合物對分配係數的影響 154 4-5-1-2 添加含有K+離子之化合物對分配係數的影響 154 4-5-1-3 添加含有Cl-離子之化合物對分配係數的影響 154 4-5-1-4 改變添加NaCl之pH值對分配係數的影響 155 4-5-2 添加電解質對PEG4000與MgSO4兩水相系統的影響 155 4-5-2-1 添加不同硫酸根離子化合物對分配係數的影響 155 4-5-2-2 添加含有K+離子之化合物對分配係數的影響 156 4-5-2-3 添加NaCl對分配係數的影響 156 第五章 結論 164 參考文獻 167

    參考文獻
    C.O. Wilson and O. Gisvold, “Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry”, 8th ed., J. B. Lippincott, Philadelphia, 1982.
    A. Olsson and M. Uhlen, “Sequencing and heterologous expression of the gene encoding penicillin V amidase from Sphaericus”, Gene, 45, pp.175-181, 1986.
    H. Ohashi, Y. Katsuta and T. Kamei, “Expression of the arthrobacter viscous penicillin G acylase gene in Escherichia coli and Bacillus Subtilis”, Appl. Environ. Microbiol., 55(6), pp.1351-1356, 1989.
    J.C. Sheehan and J.P. Ferris, “The chemical conversion of penicillin G into a biologically active synthetic penicillin series”, J. Am. Chem. Soc., 81, p.2912, 1959.
    R.R. Yocum, J.R. Rasmussen and J.L. Strominger, “The mechanism of action of penicillin”, J. Bio. Chem., 255, pp.3977-3986. 1980.
    R.B. Morin, B.G. Jackson, E.H. Flynn and R.W. Roeske, “Chemistry of cephalosporin antibiotics. I. 7-aminocephalosporin acid from cephalosporin C”, J. Am. Chem. Soc., 84, p.3400, 1962.
    R.B. Morin, B.G. Jackson, E.H. Flynn and R.W. Roeske, “Chemistry of cephalosporin antibiotics II. Preparation of a new class of antibiotics and the relation of structure to activity”, J. Am. Chem. Soc., 84, pp.3400-3401, 1962.
    K. Matsumoto, “Production of 6-APA, 7-ACA, and 7-ADCA by immobilized penicillin and cephalosporin amidase”, Indus. Applic. Immob. Biocatal., Dekker, New York, 1993.
    C.M. Cimarusti, “Dependence of b-lactamase stability on substructures within b-lactam antibiotics”, J. Med. Chem., 27, pp.247-253, 1984.
    V.K. Sudhakaran, and J.G. Shewale, “Purification and characterization of extracellular penicillin V acylase from Fusarium sp. SKF 235”, Hind Antibiot. Bull., 37, pp.9-15, 1995.
    F. Carlsen and C. Emborg, “Bacillus sphaericus V-Penicillin Acylase”, Biotechnol. Lett., 3, pp.375-378, 1981.
    H.L. Duggleby, S.P. Tolley, C.P. Hill, E.J. Dodson, G. Dodson and P.C.E. Moody, “Penicillin acylase has a single-amino-acid catalytic center”, Nature, 373, pp.264-268, 1995.
    A. Olsson, T. Hagstrom, B. Nilsson, M. Uhlen and S. Gatenbeck, “Molecular cloning of Bacillus Sphaericus penicillin V acylase gene and its expression in E. coli and B. Subtils”, Appl. Environ. Microbiol., 49, pp.1084-1089, 1985.
    V.K. Sudhakaran, B.S. Deshpande, S.S. Ambedkar and J.G. Shewale, “Molecular aspects of penicillin and cephalosporin acylases”, Process Biochem., 27, pp.131-143, 1992.
    B.S. Deshpande, S.S. Ambedkar, V.K. Sudhakaran and J.G. Shewale, “Molecular biology of beta-lactam acylases”, World J. Microbiol. Biotechnol., 10, pp.129-138, 1994.
    D. Chiang and R.E. Bennett, “Purification and properties amidase from Bacillus megaterium”, J. Bacteriol., 93, pp.303-308, 1967.
    J.M.T. Hamilton-Miller, J.T. Smith and R. Knox, “The estimation of penicillins and penicillins destruction”, J. Pharm. Pharmacol., 15, pp.81-91, 1963.
    M. Col, “Factors affecting the synthesis of ampicillin and hydroxypenicillins by the cell-bound penicillin acylase of Escherichia coli”, Biochem. J., 115, pp.757-765, 1969.
    M. Col, T.A. Savidge and H. Vanderhaeghe, “Penicillin acylase (assay)”, Meth. Enzymol., 43, pp.698-704, 1975.
    D.M. Gang and K. Shaikh, “Regulation of penicillin acylase in Escherichia coli by cylic amp”, Biochim. Biophys. Acta, 425, pp.111-114, 1976.
    H.J. Son, T.I. Mheen, B.L. Seong and M.H. Han, “Studies on microbial penicillin amidase (IV) the production of penicillin amidase from a partially constitutive mutant of Bacillus Megaterium”, J. Gen. Appl. Microbiol., 28, pp.281-291, 1982.
    J. Bomstein and W.G. Evans, “Automated colorimetric determination of 6-aminopenicillin acid in fermentation media”, Anal. Chem., 86, pp.576-578, 1965.
    W.J. Schneider and M. Roehr, “Purification and properties of penicillin acylase of Bovista Plumbea”, Biochim. Biophys. Acta, 452, pp.177-185, 1976.
    V. Kasche and B. Galunsky, “Ionic strength and pH effects in kinetically controlled synthesis of benzylpenicillin by nucleophilic deacylation of free and immobilized phenyl-acetyl-penicillin amidase with 6-aminopenicillin acid”, Biochem. Biophys. Res. Commun., 104, pp.1215-1222, 1982.
    H.T. Hung, T.A. Seto and G.M. Shull, “Distribution and substrate specificity of benzyl penicillin acylase”, Appl. Microbiol., 11, pp.1-6, 1963.
    T. Nara, M. Misawa, R. Okachi and M. Yamamoto, “Enzymatic synthesis of ampicillin part I:Selection of penicillin acylase production bacteria”, Agric. Biol. Chem., 35, pp.1676-4682, 1971.
    I. Haupt and H. Thrum, “Acylase activity in Streptomyces:Penicillin acylase”, Z. Allg. Microbiol., 7, pp.343-348, 1967.
    J.M.T. Hamilton-Miller, “Penicillin acylases”, Bacteriol. Rev., 30, pp.761-771, 1966.
    F.R. Batchelor, E.B. Chain, M. Richards and G.N. Rolinson, “6-APA VI. Formation of 6-APA from penicillin by enzymatic hydrolysis”, Proc. Roy. Soc., V.B.154, pp.522-531, 1961.
    M.G. Oreshina, G.A. Penzikova, M.M. Levitov and T.E. Bartoshevich, “Some properties of acylase preparation from Actinomycete”, Biokhimiya, 20, pp.787-792, 1984.
    I.V. Diers and C. Emborg, “Penicillin acylase”, British Patent, 2.021.119, 1979.
    V.K. Sudhakaran and J.G. Shewale, “Effect of culture conditions on penicillin V acylase production by Beijerinckia indica var. Penicillanicum”, J. Microbiol. Biotechnol., 5, pp.66-74, 1990.
    A.V. Pundle, “Microbial enzymes:Studies on penicillin V acylase (EC. 3.5.1.11) from Bacillus sphaericus”, Ph.D. Thesis, University of Pune, India, 1995.
    D.H. Nam and D.D.Y. Ryu, “Enzymatic synthesis of phenoxy-methyl penicillin using Erwinia aroideae enzyme”, J. Antibiot., 37, pp.1217-1223, 1984.
    D.H. Nam and D.D.Y. Ryu, “Synthesis of phenoxy-methyl penicillin using alpha-acylamino beta-lactam acyl hydrolase from Erwinia aroideae”, Ann. N. Y. Acad. Sci., 343, pp.210-213, 1984.
    E.J. Vandamme and J.P. Votes, “Properties of purified penicillin V acylase of Erwinia aroideae”, Experientia, 31, pp.140-143, 1975.
    D.A. Lowe, G. Romancik and R.P. Elander, “Penicillin Acylase. A review of existing enzymes and the isolating of a new bacterial penicillin V acylase”, Dev. Ind. Microbial., 9, pp.537-554, 1984.
    F. Carlsen and C. Emborg, “Bacillus sphaericus V penicillin acylase II. isolation and characterization”, J. Chem. Technol. Biotechnol., 32, pp.808-811, 1982.
    M. Cole, “Formation of 6-APA, penicillin and penicillin acylase by various fungi”, Appl. Microbiol., 14, pp.98-103, 1966.
    T. Nata and M. Misawa, “6-APA”, Japan patent, 7.310.237, 1973.
    M. Cole and G.N. Rolinson, “6-APA Part III:Formation of 6-APA by Emericellopsis minima (stolk) and related fungi”, Proc. Roy Soc., V.B.154, pp.490-497, 1961.
    J. Uri, G. Valu and I. Bekesi, “Production of 6-APA by Dermatophytus”, Nature, 200, pp.896-897, 1963.
    S.B. Thadani, “Penicillin acylase from Fusarium sp. 7.5-5 and E. coli NCIM 2400”, Ph.D. Thesis, University of Pune, India, 1971.
    Y.C. Su, C.I. Chen and S.H. Yu, “Fermentative production of penicillin amidase and its application. II:Optimization of culture conditions for the enzyme production by Fusarium NTU 35, some properties of enzyme and purification of 6-APA from mixture”, Kuo Li Taiwan Ta Hsueh Numg Hsueh Yuan Yen Chiu Pao Kao, 23, pp.42-56, 1983.
    H. Vandergaeghe, “Penicillin acylase (fungal)”, Methods Enzymol., 43, pp.721-728, 1975.
    K. Singh, S.N. Sehgal and C. Vezina, “Conversion of penicillin V to 6-APA using spores”, U.S. Patent, 3.305.453, 1967.
    K. Singh, S.N. Sehgal and C. Vezina, “Hydrolysis of phenoxymethyl penicillin into 6-APA with spores of Fusaria”, Appl. Microbiol., 17, pp.643-644, 1969.
    E.J. Vandmme and J.P. Voets, “Properties of purified penicillin acylase produced by Erwinia Aroideae”, Ann. Inst. Pasteur, 121, pp.435-446, 1971.
    E.J. Vandmme, J.P. Voets and Beyaert, “Penicillin V acylase activity of fungal spores”, Meded. Fac. Landbouwwetensch Rijiks. Univ. Gint, 36, pp.577-605, 1971.
    D.A. Lowe, G. Romancik and R.P. Elander, “Enzymatic hydrolysis of penicillin V to 6-APA by Fusarium oxysporum”, Biotechnol. Lett., 8, pp.151-156, 1986.
    G. Sheng and Y. Ye, “Some enzymological and kinetic properties of immobilized Fusarium oxysporum”, Shengwa Gongcheng Xuebao, 5, pp.129-134, 1989.
    F. Baumann, R. Brunner and M. Rohr, “The substrate specificity of penicillin amidase from Fusarium semitectum”, Z. Physiol. Chem., 352, p.853, 1971.
    B. Meessxhaert, S. G. Espinosa, and J. F. Martin, “Extraction, Purification and Properties and Partial Characterization of a Penicillin V Acylase from Penicillium chrysogenum”, Meded. Fac. Landbouwwet. Rijiks. Univ. Gent, V.56, pp.1781-1783, 1991.
    E.J. Vandamme and J.P. Voets, “Penicillin V acylase produced by Rhodotorula glutinis var. glutinis”, Z. Allh. Microbiol., 13, pp.701-710, 1973.
    E.J. Vandamme and J.P. Votes, “Properties of the purified penicillin V-acylase of Erwinia aroideae”, Experienta, 31, pp.140-143, 1975.
    P.B. Mahajan and P.S. Borkar, “Novel approaches to the purification of penicillin acylase”, Appl. Biochem. Biotechnol., 9, pp.421-426, 1984.
    L.J. Heuser, R.X. Chiang, H. Park, F.D. Anderson and N.J. Milltown, “Method for the production of 6-APA”, U.S. Patent, 3.446.705, 1969.
    C. Sivaraman, B. Bheemeswar, S. Ramachandran and P.S. Borkar, “6-APA”, India Patent, 139.908, 1976.
    C. Sivaraman, S.S. Subramaniam, H. Sivaraman, B.S. Rao, R.R. Ratnaparkhi, S. Ramachandran, P.S. Borkar and S.B. Thadani, “6-APA”, India Patent, 139.907, 1976.
    D. Biarchi, P. Golini, R. Bortolo and P. Cesti, “Immobilization of PGA on aminoalkylated poly acrylic supports”, Enzyme Microb. Technol., 18, pp.592-596, 1996.
    A. Prabhume and H. Sivaraman, “Immobilization of PGA in porous beads of polyacrylamide gel”, Appl. Biochem. Biotechnol., 30, pp.265-272, 1991.
    S. Gestrelius, “Immobilized penicillin acylase for production of 6-APA from penicillin V”, Enzyme Eng., 5, pp.439-442, 1980.
    A. Kohia, L. Selvaraj, C.R. Rajan, S. Pontrathnam, K.K. Kumar, G.R. Ambekar and J.G. Shewale, “Adsorption and expression of penicillin G acylase immobilized onto methylacrylate polymers generated with varying pore generating solvent volume”, Appl. Biochem., 30, pp.297-302, 1991.
    P. Linko and Y.Y. Linko, “Application of immobilized microbial cells”, Appl. Biochem. Bioeng., 4, pp.53-151, 1983.
    E. Brandl, W. Kleiber and F. Knauseder, “Process for Production of 6-APA”, U.S. Patent, 3.737.375, 1973.
    E. Brandl and F. Knauseder, “Process for the production of 6-APA”, German Offen., 2.503.584, 1975.
    M. Kluge, J. Klein and F. Wagner, “Production of 6-APA by immobilized Pleurotus Ostreatus”, Biotechnol. Lett., 4, pp.293-296, 1982.
    D. Singh, R. Goel and B.N. Johri, “Deacylation of penicillin by the immobilized Mycelia of the thermophilic Malbranchea”, J. Gen., Appl. Microbiol., 34, pp.333-339, 1988.
    I. Chibata, T. Tosa and T. Sato, “Manufacture of 6-APA by immobilized Penicillin amidase-containing organisms”, German Offen., 2.414.128, 1974.
    I. Chibata, T. Tosa and T. Sato, “Manufacture of 6-APA by immobilized penicillin amidase-containing microorganisms”, U.S. Patent, 3.953.291, 1976.
    J. Klein and F. Kluge, “Immobilization of whole microbial cells for the production of 6-APA”, Enzyme Eng., 5, pp.335-345, 1980.
    L.P. Fonseca, J.P. Cardoso and J.M.S. Cabral, “Immobilization studies of an industrial penicillin acylase preparation on a silica carrier”, J. Chem. Tech. Biotechnol., 58, pp.27-37, 1993.
    I. Miesiac, K. Schügerl and J. Szymanowski, “Permeation of 6-nitro-3- phenylacetamide benzoic acid (NIPAB) and hydrolysis by penicillin acylase immobilized in emulsion liquid membranes”, J. Chem. Tech. Biotechnol., 55, pp.1-8, 1992.
    W. Preitschopf and R. Marr, “Enzyme immobilization in liquid surfactant membranes”, Dechema Biotechnology Conf., No.4, VCH Verlag, Frankfurt, 1990.
    T. Scheper, “Enzyme immobilization in liquid surfactant membrane emulsions”, Adv. Drug. Delivery Rev., 4, pp.209-231, 1990.
    M. Tanaka, T. Konoike and M. Yoshioka, “A practice for synthesis of penicillin and cephalosporin sulfoxides”, Synthesis, 3, pp.197-198, 1989.
    W. Durckheimer, J. Blumbach, R. Lattrell and K.H. Scheuemann, “Recent developments in the field of b-lactam antibiotics”, Angew, Chem. Int. Ed. Engl., 24, pp.180-202, 1985.
    J.G. Shewale, and H. Sivaraman, “Penicillin acylase:enzyme production and its application in the manufacture of 6-APA”, Proc. Biochem., 24 , pp.146-153, 1989.
    J.H.C. Nayler, “Semi-synthetic Approaches to novel penicillins”, TIBS, 16, pp.234-237, 1991.
    R. Feranadez-Lafuente, M.C. Rosell, B. Piatkowdka and J.M. Guisan, “Synthesis of antibiotics (cephaloglycin) catalyzed by penicillin acylase. evaluation and optimization of different synthetic approaches”, Enzyme Microb. Technol., 17, pp.517-523, 1995.
    Bailey, J.E. Ollis and D.F. Ollis, “Biochemical engineering fundamentals”, 2nd ed., McGraw-Hill, New York, 1986.
    R.A. Messing (ed.), “Immobilized enzymes for industrial reactors”, Academic Press, New York, 1975.
    P.B. Mahajan, “Review penicillin acylases an update”, Appl. Biochem. Biotech., 9, pp.537-553, 1984.
    E.J. Vandamme, “Peptide antibiotic production through immobilized biocatalyst technology”, Enzyme Microb. Technol., 5, pp.403-415. 1983.
    Tadashi, T. Tosa and I. Chibata, “Continuous production of 6-amionpenicillanic acid from penicillin by immobilized cicrobial cells”, European J. Appl. Microbiol., 2, pp.153-160, 1976.
    I.D. Fleming, M.K. Turner and E.J. Napier, “Deacylation of 3-methyl-7- beta-(phenoxyacetamido)3-cepham-4carboxylic acid”, German Offen., 2(422), p.374, 1974.
    E.J. Vandamme, “Use of microbial enzyme and cell preparations to synthesis oligopeptide antibiotics”, J. Chem. Technol. Biotechnol., 37, pp.637-659, 1981.
    R. Fernández-Lafuente, C.M. Rosell, B. Piatkowska and J.M. Guisán, “Synthesis of antibiotics (cephaloglycin) catalyzed by penicillin G acylase:Evaluation and optimization of different synthetic approaches”, Enzyme Microb. Techanol., 19, pp.9-14, 1996.
    S. Ospina, E. Barzana, O.T. Ramírez and Agtstínópez-Munguía, “Effect of pH in the synthesis of ampicillin by penicillin acylase”, Enzyme Microb. Techanol., 19, pp.9-14, 1996.
    S.E. Jensen, D.W.S. Westlake and S. Wolfe, “Production of penicillins and cephalosporins in an immobilized enzyme reactor”, Appl. Microbiol. Biotechnol., 20, pp.155-160, 1984.
    W.L. Baker, “Application of the fluorescamine reaction with 6-aminopenicillanic acid to estimation and detection of penicillin acylase activity”, Antimicrob. Ag. Chemother., 23(1), pp.26-30, 1983.
    A.L. Margolin, V.K. Svedas and I.V. Berezin, “Substrate specificity of penicillin amidase from E. coli”, Biochim. Biophys. Acta, 616, pp.283-289, 1980.
    A.L. Margolin, V.K. Svedas and I.V. Berezin, “Enzymatic synthesis of b-lactam antibiotics: A thermodynamic background”, Enzyme Microb. Technol., 2, pp.138-144, 1980.
    V.K. Svedas, A.L. Margolin and I.V. Berezin, “Kinetics of the enzymatic synthesis of benzylpenicillin”, Enzyme Microb. Technol., 2, pp.313-317, 1980.
    D. Warburton, P. Dunnill and M.D. Lilly, “Conversion of benzylpenicillin to 6-aminopenicillin acid in a batch reactor and continuous feed stirred tank reactor using immobilized penicillin amidase”, Biotechnol. Bioeng., 15, pp.13-25, 1973.
    S.B. Lee and D.D.Y. Ryu, “Reaction kinetics and mechanisms of penicillin amidase : A comparative study by computer simulation”, Enzyme Microb. Technol., 4, pp.35-38, 1982.
    J. Konecy, “Penicillin acylase as amidohydrolases and acyl transfer catalysts”, Biotechnol. Lett., 3(3), pp.112-117, 1981.
    J. Konecy, M. Siber and A. Schneider, “Kinetics and mechanism of acyl transfer by penicillin acylases”, Biotechnol. Lett., 3(9), pp.507-512, 1981.
    J. Konecy, M. Siber, and A. Schneider, “Kinetics and mechanism of acyl transfer by penicillin scylases”, Biotechnol. Bioeng., 25, pp.451-467, 1983.
    H. Walter and G. Johansson, “Partition in aqueous two-phase system:An overview”, Anal. Biochem., 155, pp.215-242, 1985.
    M.J. Sehastiao, J.M.S. Cabral and M.R. Aires-Barros, “ Fusariom solani pisi recombinant cutinase partitioning in PEG/potassium phosphate aqueous two-phase systems”, Biotechnol. Techn., 7, pp.631-634, 1993.
    R. Sinha and S.P. Singh, “Partition of a Bacillus alkaline protease in aqueous two-phase systems”, Biosource Technol., 55, pp.163-166, 1996.
    B. Hahn-Hagerdal, B. Mattiasson and P.A. Albertsson, “Extractive bioconversion in aqueous two-phase system:A model study on the conversion of cellulose to ethanol”, Biotechnol. Lett., 3, pp.53-58, 1981.
    F. Tjerneld I. Persson, P.A. Albertsson and B. Hahn-Hagerdal, “Enzymatic hydrolysis of cellulose in aqueous two-phase system. II. Semicontinuous conversion of a model substrate”, Solka Floc BW 200., Biotechnol. Bioeng., 27, pp. 1044-1050, 1985.
    J.C. Marcos, L.P. Fonseca M.T. Ramalho and J.M.S. Cabral, “Partial purification of penicillin acylase from Escherichia coli in poly(ethylene glucol)-sodium citrate aqueous two-phase systems”, J. Chromatogr. B, 734, pp.12-22, 1999.
    J.C. Marcos, L.P. Fonseca M.T. Ramalho and J.M.S. Cabral, “Application of surface response analysis to the optimization of penicillin acylase purification in aqueous two-phase systems”, Enzyme Microb. Technol., 31, pp.1006-1014, 2002.
    E. Andersson, B. Mattison and B. Hahn-Hagerdal, “Enzymatic conversion in aqueous two-phase systems:Deacylation of benzylpenicillin to 6-amino- penicillanic acid with penicillin acylase”, Enzyme Microb. Technol., 6, pp. 301-306, 1984.
    Y.H. Guan, T.H. Lilley and A.H. Brook, “Production of immobilized penicillin acylase using aqueous polymer systems for enzyme purification and in situ immobilization”, Enzyme Microb. Technol., 28, pp.218-224, 2001.
    Y. Hayashi, M.M.R. Talukder, J.C. Wu, T. Kawanishi and N. Shimizu, “A kinetic model for enzymatic reactions in reverse micellar systems involving water-insoluble substrates and enzyme activators”, J. Chem. Technol. Biotechnol., 78, pp.860-864, 2003.
    M.M.R. Talukder, Y. Hayashi, T. Takeyama, M.M. Zamam, J.C. Wu, T. Kawanishi and N. Shimizu, “Activity and stability of Chromobacterium viscosum lipase in modified AOT reverse micelles”, J. Mol. Catal. B-Enzym., 22, pp.203-209, 2003.
    Y. Hayashi, M.M.R. Talukder, J. Wu, T. Takeyama, T. Kawanishi and N. Simizu, “Increased activity of Chromobacterium viscosum lipase in AOT reverse micelles in the presence of short chain methoxypolyethylene glycol”, J. Chem. Technol. Biotechnol., 76, pp.844-850, 2001.
    H.-J. Odette, F.-L. Roberto and T. Marco, “Use of aqueous two-phase systems for in situ extraction of water soluble antibiotics during their synthesis by enzymes immobilized on porous supports”, Biotechnol. Bioeng., 59, pp.73-79, 1997.
    P.A. Albertsson, “Partition of cell particles and macromolecules”, 3rd ed., Wiley, New York, 1986.
    J.N. Baskir and T.A. Hatton, “Protein Partitioning in aqueous two-phase polymers systems”, Biotechnol. Bioeng., 34, pp.541-558, 1989.
    L.H.M.D. Silva and A.R. Coimbra, “Equilibrium phase behavior of poly (ethylene glycol) + potassium phosphate + water two-phase systems at various pH and temperature”, J. Chem. Eng. Data, 42, pp.398-401, 1997.
    H.-O. Johansson, G. Karlstrom, B. Mattiasson and F. Tjerneld, “Effects of hydrophobicity and counter ions on the partitioning of amino acids in thermoseparation UCON-water two-phase systems”, Bioseparation, 5, pp. 269-279, 1995.
    H.-O. Johansson, J. Peterson and F. Tjerneld, “Thermoseparation water/polymer system:A novel one-polymer aqueous two-phase system for protein purification”, Biotechnol. Bioeng., 66, pp. 247-257, 1999.
    N. Pietruszka, I.Y. Galaev, A. Kumar, Z.K. Brzozowski and B. Mattiasson, “New polymers forming aqueous two-phase polymer system”, Biotechnol. Prog., 16, pp. 408-415, 2000.
    M. Dixon, E.C. Webb, C.J.R. Thorne and K.F. Tipton, Enzymes, 3rd ed., Longman, London, 1979.
    陳國誠,酵素工程,藝軒圖書出版社,1989。
    R. Koningsveld, “Partial miscibility of multicomponent polymer solution”, Adv. Colloid. Interface Sci., 2, p.151, 1986.
    R.L. Scott, “The thermodynamics of high-polymer solution ”, J. Chem. Phys., 17, p.268, 1949.
    P.J. Flory, “Principle of polymer chemistry”, Cornell university Press, Ithaca, New York, 1953.
    M.L. Huggins, “Physical chemistry of high polymers”, Wiley, New York, 1958.
    H. Morawetz, “Macromolecules in solution”, Wiley Interscience, New York, 1975.
    J.N. Baskir, A.T. Hatton and U.W. Suter, “Protein partitioning in two-phase aqueous polymer systems”, Biotechnol. Bioeng., 34, p.541, 1989.
    A. Erarslan, “The Effect of pH on the kinetics of penicillin G Acylase obtained from a mutant of Escherichia coli ATCC 11105”, Process Biochemistry, 28, pp.319-324, 1993.
    A. Erarslan, I. Terzi, A. Güray and E. Bermek, “Purification and kinetics of penicillin G acylase from a mutant strain of Escherichia coli ATCC 11105”, J. Chem. Technol. Biotechnol., 51, pp.27-40, 1991.
    A. Erarslan and A. Güray, “Kinetic investigation of penicillin G acylase from a mutant strain of Escherichia coli ATCC 11105 immobilized on oxirane-acrylic beads”, J. Chem. Technol. Biotechnol., 51, pp.181-195, 1991.
    S.S. Ospina, A. Lopez-Munguia, R.L. Gonzalez, and R. Quintero, “Characterization and Use of A Penicillin Acylase Biocatalyst”, J. Chem. Tech. Biotechnol., 53, pp.205-214, 1992.

    下載圖示 校內:2007-02-16公開
    校外:2007-02-16公開
    QR CODE