簡易檢索 / 詳目顯示

研究生: 文俊永
Wen, Chun-Yung
論文名稱: 用於H.264快速外框預測之可調式移動搜尋演算法
Adaptive Motion Search Algorithms for Fast H.264 Inter Prediction
指導教授: 劉濱達
Liu, Bin-Da
楊家輝
Yang, Jar-Ferr
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 58
中文關鍵詞: 移動搜尋空間相關
外文關鍵詞: motion vector, motion estimation, H.264, inter prediction
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文的主旨在於提出一個快速外框預測之可調式移動搜尋演算法和硬體架構,而此種設計可適用於H.264/AVC 的視訊標準。這種演算法是根據時間和空間相關區塊中的資料,來預測出一個搜尋的中心,並且將所有的情況分為三種情形。根據改良後的演算法,可更進一步地減少搜尋點的數量。因此在每個巨大區塊中,只需要
    搜尋10~15 個點就可以達到和全區域搜尋法相似的影像品質。所以說,此種演算法可以提供高度的影像品質和少量的計算複雜度。比較結果顯示,提出的演算法所繪出之位元率-失真曲線比其他種演算法來的優異。根據上述演算法,設計出其所對應的硬體架構。並利用0.18 μ m 的製程技術合成,其結果顯示整體架構需要21700 個邏輯閘,且最快的時脈速度可達到142 MHz,故得知其可適用在720-p HD(1280×720) 解析度下即時的預測處理。此外經一個衡量效率的參數來比較各種架構,本架構比其他架構擁有更高的效率。

    In this thesis, we propose an adaptive algorithm and its corresponding architecture of motion estimation for H.264/AVC. In the proposed algorithm, the correlations of the adjacent macroblcoks and temporal macroblock are exploited to predict a new searching center. According to the correlations, three kinds of search patterns and two-step search algorithm are used to reduce the search points further. Based on different image sequences, the average number of search points in a macroblock is 10~15 and the performance is similar to full search algorithm. Thus, a higher video quality and lower computational complexity algorithm is obtained. In order to support the irregular search patterns, we present a suitable architecture instead of the traditional designs. This architecture is
    synthesized with 0.18 μ m technology and a parameter used to evaluate the performance-price rate is introduced to compare with other architectures. According to the
    synthesis results, the architecture is implemented with 21.7k gate count and at 142 MHz, which achieves the requirement for real-time processing of 720p-HD video format.

    Table of Contents..................................... viii List of Tables ........................................ iii List of Figures ....................................... ixi Chapter 1 Introduction................................... 1 1.1 Motivation .......................................... 1 1.2 Organization for the Thesis ......................... 3 Chapter 2 Basic Concepts of Motion Estimation in H.264... 4 2.1 Basic Concepts for Video CODEC of H.264 ............. 4 2.2 Basic Concepts for Motion Estimation ................ 6 2.2.1 Block matching motion estimation .................. 6 2.2.2 Variable block size in H.264....................... 8 2.2.3 Multiple reference frames ......................... 9 2.2.4 Fractional sample process ........................ 10 2.3 Traditional Search Algorithms ...................... 13 2.3.3 Three-step search algorithm....................... 14 2.3.4 Four-step search algorithm........................ 15 2.3.5 Hexagonal search algorithm........................ 16 Chapter 3 Adaptive Search Algorithm for Motion Estimation in H.264................................................ 18 3.1 Background of the Proposed Motion Algorithm......... 18 3.2 The Concepts of the Proposed Motion Algorithm....... 22 3.3 The Detailed Flow of the Proposed Algorithm ........ 23 Chapter 4 Hardware Architecture for Motion Estimation Using Adaptive Motion Search Algorithm in H.264 .........30 4.1 Overview the Hardware Architecture of Motion Estimation ............................................. 31 4.2 Architecture of PE_UNIT............................. 33 4.3 Cache Memory Design for Data Reuse.................. 35 4.4 Detailed Data Flow of the Proposed ME Architecture.. 38 4.5 State Diagram of Proposed Design ................... 39 Chapter 5 Verification and Synthesis Results............ 42 5.1 Verification ....................................... 42 5.1.1 Verification flow................................. 42 5.1.2 Simulation results................................ 44 5.2 Synthesis Results................................... 52 5.3 Summary ............................................ 55 Chapter 6 Conclusions and Future Work .................. 56 6.1 Conclusions ........................................ 56 6.2 Future Work......................................... 57 References ............................................. 58

    [1] K. L. Chung and L. C. Chang, “A new predictive search area approach for fast block motion estimation,” IEEE Trans. Image Processing, vol. 12, pp. 648-652, June 2003.
    [2] W. I. Choi, B. Jeon, and J. Jeong, “Fast motion estimation with modified diamond search for variable motion block sizes,” in Proc. IEEE ICIP, Sept. 2003, pp. 371-374.
    [3] L. P. Chau and X. Jing, “Efficient three-step search algorithm for block motion estimation in video coding,” in Proc. IEEE ICASSP, Apr. 2003, pp. 421-424.
    [4] J. S. Chieng, H. G. Chou, and J. Y. Tzou, “An efficient and regular motion estimation algorithm for MPEG4-AVC/H.264 coding,” in Proc. IEEE CNNA, May 2005, pp. 253-256.
    [5] M. C. Chang and J. S. Chien, “An adaptive search algorithm based on block classification for fast block motion estimation,” in Proc. IEEE ISCAS, May 2006, pp. 3982-3985.
    [6] C. Y. Chen, S. Y. Chien, Y. W. Huang, T. C. Chen, T. C. Wang, and L. G. Chen, “Analysis and architecture design of variable block-size motion estimation for H.264/AVC,” IEEE Trans. Circuits Syst. I, vol. 53, pp. 578-593, Feb. 2006.
    [7] C. Y. Chen, C. T. Huang, Y. H. Chen, and L.G. Chen, “Level C+ data reuse for motion estimation with corresponding coding orders,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 553-558, Apr. 2006.
    [8] M. J. Chen, G. L. Li, Y. Y. Chiang, and C. T. Hsu, “Fast mlutiframe motion estimation algorithms by motion vector composition for the MPEG-4/AVC/H.264 standard,” IEEE Trans. Multimedia, vol. 8, pp. 478-487, June 2006.
    [9] L. Deng, W. Gao, M. Z. Hu, Z. Z. Ji, “An efficient hardware implementation for motion estimation of AVC standard,” IEEE Trans. Consumer Electron., vol. 51, pp. 1360-1366, Nov. 2005.
    [10] Y. W. Huang, T. C. Wang, B. Y. Hsieh, and L. G. Chen, “Hardware architecture design for variable block size motion estimation in MPEG-4 AVC/JVT/ITU-T H.264,” in Proc. IEEE ISCAS, May 2003, pp. 796-799.
    [11] Y. W. Huang, B. Y. Hsieh, S. Y. Chien, S. Y. Ma, and L. G. Chen, “Analysis and complexity reduction of multiple reference frames motion estimation in H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 507-522, Apr. 2006.
    [12] P. R. Hill, T. K. Chiew, D. R. Bull, and C. N. Canagarajah, “Interpolation free sub-pixel accuracy motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 1519-1526, Dec. 2006.
    [13] M. Kim, I. Huang, S. I. Chae, “A fast VLSI architecture for VBSME in MPEG-4 AVC/H.264,” in Proc. IEEE ASP-DAC, May 2005, pp. 631-634.
    [14] S. E. Kim, J. K. Han, and J. G. Kim, “An efficient scheme for motion estimation using multi-reference frames in H.264/AVC,” IEEE Trans. Multimedia, vol. 8, pp. 457-466, June 2006.
    [15] X. Li, E. Q. Li, and Y. K. Chen, “Fast multi-frame motion estimation algorithm with adaptive search strategies in H.264,” in Proc. IEEE ICASSP, May 2004, pp. 369-372.
    [16] K. R. Namuduri, “Motion estimation using spatio-temporal contextual information,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, pp. 1111-1115, Aug. 2004.
    [17] Y. Nie and K. K. Ma, “Adaptive irregular pattern search with matching prejudgement for fast block-matching motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 789-794, June 2005.
    [18] C. M. Ou, C. F. Le, and W. J. Hwang, ”An efficient VLSI architecture for H.264 variable block size motion estimation, ” IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 1291-1299, Nov. 2005.
    [19] L. M. Po and W. C. Ma, ”A novel four-step search algorithm for fast block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, pp. 313-317, June 1996.
    [20] I. E. G. Richardson, H.264 and MPEG-4 Video Compression. Chichester, UK: John Wiley & Sons, 2003.
    [21] T. Shimizu, A. Yoneyama, H. Yanagihara, and Y. Nakajima, “A two-stage variable block size motion search algorithm for H.264 encoder,” in Proc. IEEE ICIP, Oct. 2004, pp. 1481-1484.
    [22] Y. Su and M. T. Sun, “Fast multiple reference frame motion estimation for H.264/AVC,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 447-452, Mar. 2006.
    [23] T. H. Tsai and Y. N. Pan, “A novel 3-D Predict Hexagon Search Algorithm for fast block motion estimation on H.264 video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, pp. 1542-1549, Dec. 2006.
    [24] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, pp. 560-576, July 2003.
    [25] C. Wei, Z. Yan, M. Z. Gang, and L. Z. Qiang, “VLSI architecture design for variable-size block motion estimation in MPEG-4 AVC/H.264,” in Proc. IEEE APCCAS, Dec. 2004, pp. 617-620.
    [26] C. Wei and M. Z. Gang, “A novel VLSI architecture for VBSME in MPEG-4 AVC/H.264,” in Proc. IEEE ISCAS, May 2005, pp. 1794-1797.
    [27] H. Wang, S. Kwong, and C.W. Kok, “An efficient mode decision algorithm for H.264/AVC encoding optimization,” IEEE Trans. Multimedia, vol. 9, pp. 882-888, June 2007.
    [28] S. Y. Yap and J. V. Mccanny, “A VLSI architecture for variable block size video motion estimation,” IEEE Trans. Circuits Syst. II, vol. 51, pp. 384-389, July 2004.
    [29] L. Yang, K. Yu, J. Li, and S. Li, “Prediction-based directional fractional pixel motion estimation for H.264 video coding,” in Proc. IEEE ICASSP, Mar. 2005, pp. 901-904.
    [30] T. Yamada, M. Ikekawa, and I. Kuroda, “Fast and accurate motion estimation algorithm by adaptive search range and shape selection,” in Proc. IEEE ICASSP, Mar. 2005, pp. 897-900.
    [31] L. Yang, K. Yu, J. Li, and S. Li, ”An effective variable block-size early termination algorithm for H.264 video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 15, pp. 784-788, June 2005.
    [32] S. Yao, H. J. Guo, L. Yu, and K. Zhang, “A hardware implementation for full-serach motion estimation of AVS with search center prediction,” IEEE Trans. Consumer Electron., vol. 52, pp. 1356-1361, Nov. 2006.
    [33] C. Zhu, X. Lin, and L. P. Chau, “Hexagon-based search pattern for fast block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, pp. 349-355, May 2002.

    下載圖示 校內:2008-08-15公開
    校外:2010-08-15公開
    QR CODE