| 研究生: |
黃嘉緯 Huang, Jia-wei |
|---|---|
| 論文名稱: |
由深海浮標資料分析臺灣東部海域風浪及湧浪之特性 Wind waves and swells characteristics derived from the deep-ocean data buoy at eastern water of Taiwan |
| 指導教授: |
黃清哲
Huang, Ching-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 深海資料浮標 、完全成熟波浪 、湧浪 、波齡 、P-M波譜 、方向波譜 、修正型Wallops波譜 |
| 外文關鍵詞: | Deep ocean data buoy, fully-developed sea, swell, wave age, P-M spectrum, modify Wallops spectrum |
| 相關次數: | 點閱:116 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中央氣象局在台灣東部海域300公里外、水深5600m處設置有一深海資料浮標。本文選定此一浮標所測得2010年9月26日至30日穩定風場時段之波浪資料加以分析。根據示性波高、平均波浪週期、及波齡等資料,篩選分類出強烈湧浪特性的第一波齡時區、湧浪及風浪混合的第二波齡時區、及成熟風浪的第三波齡時區。並依聯合國氣象組織(WMO)於1998年所建議之波浪分析及預報準則,得到馬勒卡颱風造成湧浪之特性。資料分析顯示第三個波齡時區的波浪中仍含有微弱湧浪,之後隨著風浪逐漸明顯;風浪能譜之尖峰頻率由0.2Hz移往0.16Hz。在9月30日22時浮標所測得波浪之波譜與P-M波譜尖峰頻率及能量分佈幾乎相同,顯示從當時起波浪型態趨近完全成熟風浪。此外,本文也探討2011年7月16日至2011年7月18日間,從兩千公里外的馬鞍颱風,傳遞到浮標位置時其湧浪譜之特性。當湧浪傳遞過來時,其尖峰頻率為0.07Hz,而後因當地風場產生之風浪與湧浪結合後,波譜出現雙峰現象,低頻部分之能量即為湧浪造成之能量,高頻部分之能量則為風浪產生之能量。當湧浪遠離浮標,只剩風浪產生之能量,而波譜也轉為單峰型態。由挑選出之實測湧浪譜與修正型Wallops波譜(Goda, 1999)做比較,顯示出台灣東部海域湧浪波譜型態適用修正型Wallops波譜,而m值約3~4。
The Central Weather Bureau of Taiwan has deployed an ocean data buoy at the 400 km offshore of eastern Taiwan where the water depth is 5600m. This open area is suitable for the existence of fully developed waves, which further helps explore the wind wave characteristic in the presence of swells. A stable wind prevailed during the period of 26th of September to 30th of September, 2010, following the wind data acquired from the data buoy. The wave data during this period were sorted according to the significant wave hight, average wave period and wave age into three parts, i.e. first wave age with strong swells, the second wave age with wind wave and swell matures and the third wave age with fully-developed waves. Following WMO’s guideline of wave analysis and forecasting analysis in 1998, we analyzed the swells out of Typhoon Malakas. A weak swell in third wave age is identified, and later on wind wave is becoming most-obvious. Finally, the peak frequency of wind-wave spectra shifts gradually from 0.2Hz to 0.16Hz. At 22 o’clock on 30th of September, the wave spectral properties derived from data buoy matched well with the peak frequency and energy distribution of corresponding P-M spectrum, indicating that the waves are approaching fully-developed sea. In addition, a swells out of Typhoon Ma-on prevailed during the period of 16th of July to 18th of July, 2011, following the data acquired from the data buoy. The peak frequency of swell is 0.07Hz. Swell is generally of a much lower frequency than a young wind sea, so in this case the two wave systems are well separated, both in frequency. a low-frequency spectrum oriented in typhoon representing the swell and a much broader spectrum at higher frequencies oriented towards westerly directions, representing the locally generated wind sea. The one-dimensional spectrum obtained by integrating this two-dimensional spectrum over the directions is equally distinctive because the swell and the local wind sea are well separated in frequency. When the swell was away from the buoy, the one-dimensional spectrum change to the one peak spectrum which only remain local wind energy. Compared the results of previous study with the modified Wallops spectral, we find that m value of modify Wallops spectral, which is of about 3 to 4 is well applicable to the in eastern ocean of Taiwan.
1 Cooley, J. W., and Tukey, J. W., “An Algorithm for the Machine Calculation of Complex Fourier Series”, Mathematics of computation,Vol. 19, pp. 297-301,1965.
2 Donelan, M. A., Dobson, F. W., Smith, S. D., and Anderson, R. J., “On the Dependence of Sea-Surface Roughness on Wave Development”, Journal of Physical Oceanography,Vol. 23, pp. 2143-49,1993.
3 Earle, M. D., “Nondirectional and Directional Wave Data Analysis Procedures”, NDBC Tech. Doc. 96,Vol. 1,1996.
4 Earle, M.D., “Development of Algorithms for Separation of Sea and Swell”, National Data Buoy Center Technical. Doc. 87-4,1984.
5 Goda, Y., “A Comparative Review on the Functional Forms of Directional Wave Spectrum”, Coastal Engineering Journal, Vol. 41, pp. 1–20,1999.
6 Guedes Soares, C., “On the Occurrence of Double Peaked Wave Spectra”, Ocean Engineering,Vol. 18, pp. 167-71,1991.
7 Hanson, J. L., and Phillips, O. M., “Automated Analysis of Ocean Surface Directional Wave Spectra”, Journal of Atmospheric and Oceanic Technology,Vol. 18, pp. 277-93,2001.
8 Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D.J., Richter, K., Sell, W., and Walden, H., “Measurement of Wind Wave Growth and Swell Decay During the Joint North Sea Wave Project”, Deutches Hydrographisches Institut, pp. 95,1973.
9 Holthuijsen, L. H., Waves in Oceanic and Coastal Waters Cambridge University Press, 2007.
10 Huang, N. E., Long, S. R., Tung, C. C., Yuen, Y., and Bliven, L. F., “A Unified 2-Parameter Wave Spectral Model for a General Sea State”, Journal of Fluid Mechanics,Vol. 112, pp. 203-24,1981.
11 Kitaigorodskii, S. A., “On the Theory of the Equilibrium Range in the Spectrum of Wind-Generated Gravity Waves”, Journal of Physical Oceanography,Vol. 13, pp. 816-27,1983.
12 Li, S. Q., Zhao, D. L., Zhou, L. M., and Liu, B., “Dependence of Mean Square Slope on Wave State and Its Application in Altimeter Wind Speed Retrieval”, International Journal of Remote Sensing,Vol. 34, pp. 264-75,2013.
13 Longuet-Higgins, M.S. , Cartwright, D.E., and Smith, N.D., “Observations of the Directional Spectrum of Sea Waves Using the Motions of a Floating Buoy”, Ocean Wave Spectra, pp. 11-132,1963.
14 Miles, J. W., “On the Generation of Surface Waves by Shear Flows”, Journal of Fluid Mechancis,Vol. 3, pp. 185-204,1957.
15 Miles, J. W., “On the Generatoin of Surface Waves by Turbulent Shear Flow”, Journal of Fluid Mechancis,Vol. 7, pp. 469-78,1960.
16 Mitsuyasu, H., “Directional Spectra of Ocean Waves in Generation Area”, American Society of Civil Engineers, pp. 87-102,1981.
17 Neumann, G., “On Ocean Wave Spectra and a New Method of Forecasting Wind-Generated Sea”, U.S. Army Corps of Engineers Beach Erosion Board Technical Memorandum,Vol. 43,1953.
18 World Meteorological Organization, “Guide to Wave Analysis and Forecasting”, 1988.
19 Phillips,O.M.,“The Equilibrium Range in the Spectrum of Wind-Generated Waves”, Journal of Fluid Mechanics,Vol. 4, pp. 426-33,1958.
20 Phillips, O. M., “On the Generation of Waves by Turbulent Wind”, Journal of Fluid Mechancis,Vol. 2, pp. 417-45,1957.
21 Pierson, W.J., and Moskowitz, L., “A Proposed Spectral Form for Fully Developed Wind Seas Based on the Similarity Theory of S.A. Kitaigorodskii”, Journal of Geophysical Research, ,Vol. 69,pp. 5181-90,1964.
22 Thomson, W., “Hydrokinetic Solutions and Observations”, The American Journal of Science and Arts,Vol. 42, pp. 362-77, 1871
23 Thurman, H. V., “Essentials of Oceanography”, 2011.
24 簡仲璟、郭一羽, “近岸波浪頻譜形狀之研究,” 中華民國第十六屆海洋工程研討會論文集, pp.A193-A210, 1994.
25 莊士賢、高家俊, “近海水文網基本站之建置-近海水文觀測站網建置” ,近海水文中心研究報告 RAA1008,經濟部水利署委託,2002.
26 郭一羽、簡仲璟、溫博文, “淺海波浪頻譜模式之建立” ,中華民國第十八屆海洋工程研討會論文集, pp.155-166, 1996.
27 李汴軍、徐月娟、高家俊、饒國清、施孟憲(2007) , “深海資料浮標作業能量建立” ,海洋及水下科技季刊,Vol. 17, pp. 36-39,2007.
28 鄧中柱, “深海浮標之可行性研究” ,中央氣象局計畫期末報告,2003.
29 許泰文, “近岸水動力學” ,中國土木水利工程協會, 2003.