簡易檢索 / 詳目顯示

研究生: 杜懿洋
Tu, Yi-Yang
論文名稱: 氣相成長奈米碳纖維作為LaNiO3氧氣還原及氧氣析出反應雙功能催化劑之高效導電添加劑
Vapor Grown Carbon Nanofiber as an Effective Conductive Additive in LaNiO3 Bifunctional ORR/OER Catalyst
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 75
中文關鍵詞: 氧氣還原反應氧氣析出反應奈米碳纖維鈣鈦礦電催化
外文關鍵詞: Oxygen reduction reaction, Oxygen evolution reaction, Carbon nanofiber, Perovskite, Electrocatalysis
相關次數: 點閱:127下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為因應能源短缺及再生能源的發展,氫能與燃料電池的研究在近年來逐漸成為顯學。無論是使用綠能進行水分解產生氫氣做為儲能媒介,或是在可充電式金屬空氣電池的應用上,ORR和OER催化劑的開發都是至關重要的。由於具較好ORR/OER催化活性的氧化物的導電度普遍不佳導致電子傳遞產生巨大障礙而會添加碳材料組成複合材料增加其導電性。本研究即致力於發展可增加氧化物催化活性的碳材料導電添加劑。
    本研究以化學沉澱法合成LaNiO3鈣鈦礦氧化物並與以氫氧化鉀高溫活化之PR-25-XT-PS氣相成長奈米碳纖維組成複合物進行氧氣還原與氧氣析出反應雙功能催化。結果顯示相較於商業應用的碳材料如Vulcan® XC-72R、Super P® Li與石墨烯,以經KOH活化後的PR-25-XT-PS氣相成長奈米碳纖維作為在650 °C下煆燒合成的LaNiO3鈣鈦礦氧化物的導電添加劑無論在ORR或OER催化都擁有較以Vulcan® XC-72R、Super P® Li或石墨烯為導電添加劑更優異的催化活性表現。在旋轉電極轉速為1600 rpm下,其E10值為1623 mV,E-3值為665 mV,而E值則為958 mV,且在ORR電子傳遞數上亦較現有商用碳材料高,表示進行ORR時產生較少的中間產物HO2-。在本研究中,分別以XRD、SEM、TEM、BET、Raman及XPS等材料分析方法就材料的晶體結構、形貌、微結構與化學態方面進行催化劑催化性能差異的探討。

    In this study, LaNiO3 perovskite oxide was synthesized by chemical precipitation method and a complex of PR-25-XT-PS vapor grown carbon nanofibers activated by potassium hydroxide at high temperature was used for bifunctional oxygen reduction and oxygen evolution reaction. The results show that compared to commercially available carbon materials such as Vulcan® XC-72R, Super P® Li and graphene, the KOH-activated PR-25-XT-PS vapor grown carbon nanofibers as a conductive additive to LaNiO3 perovskite synthesized by calcination at 650 °C has a higher performance in both ORR and OER catalysis than Vulcan® XC-72R, Super P® Li and Graphene. XC-72R, Super P® Li or graphene as conductive additives. The E10 value was 1623 mV, E-3 value was 665 mV, and E value was 958 mV at 1600 rpm of the rotating electrode, and the ORR electron transfer number was higher than that of existing commercial carbon materials, indicating that less intermediate products, HO2-, were produced during ORR. In this study, the differences in catalytic performance of the catalysts were investigated by XRD, SEM, TEM, BET, Raman and XPS.

    摘要 i Extended Abstract ii 誌謝 xxxi 目錄 xxxii 表目錄 xxxv 圖目錄 xxxvi 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 1 第2章 文獻回顧 3 2.1 氧氣還原反應 (Oxygen Reduction Reaction, ORR) 3 2.2 氧氣析出反應 (Oxygen Evolution Reaction, OER) 5 2.2.1 OER反應機制 5 2.2.2 過電位 (Overpotential, η) 7 2.3 鈣鈦礦在氧氣反應電催化劑中的影響因素 8 2.3.1 鈣鈦礦B-site中過渡金屬元素的電子結構 8 2.3.2 氧空缺 (Oxygen Vacancies, Vo) 10 2.3.3 晶體結構 (Crystal Structure) 13 2.4 碳材料對鈣鈦礦/碳複合物OER/ORR電催化劑的影響 14 2.4.1 增加導電度 15 2.4.2 參與ORR反應機制 15 2.4.3 影響B-site過渡金屬元素的電子結構 15 2.5 KOH活化碳材料機制 17 第3章 實驗方法 20 3.1 實驗藥品 20 3.2 實驗儀器 21 3.3 實驗步驟 22 3.3.1 氣相成長奈米碳纖維活化製程 22 3.3.2 LaNiO3鈣鈦礦粉末合成 23 3.3.3 工作電極製備 24 3.4 電化學性質分析 26 3.4.1 氧氣還原反應 (ORR)電化學性質量測 27 3.4.2 氧氣析出反應 (OER)電化學性質量測 28 3.5 材料分析方法與儀器介紹 28 3.5.1 X射線繞射儀 (X-Ray Diffractometer) 28 3.5.2 化學分析電子光譜儀 (Electron Spectroscopy for Chemical Analysis, ESCA) 29 3.5.3 場發射掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscope, FE-SEM) 30 3.5.4 拉曼光譜學 (Raman spectroscopy) 31 3.5.5 穿透電子顯微鏡 (Transmission Electron Microscope, TEM) 32 3.5.6 比表面積及孔徑分析儀 (Surface Area and Porosity Analyzer) 33 第4章 結果與討論 35 4.1 電化學分析 35 4.1.1 ORR活性分析 35 4.1.2 OER活性分析 44 4.1.3 雙功能活性 53 4.2 X射線繞射晶體結構分析 53 4.3 材料形貌及微結構分析 54 4.3.1 PR-25-XT-PS氣相成長奈米碳纖維 54 4.3.2 LaNiO3鈣鈦礦 60 4.4 X射線光電子能譜分析 61 第5章 結論與未來展望 65 第6章 參考文獻 67

    1. Yang, Z., et al., Electrochemical energy storage for green grid. Chemical Reviews, 2011. 111(5): p. 3577-3613.
    2. Chow, J., R.J. Kopp, and P.R. Portney, Energy resources and global development. Science, 2003. 302(5650): p. 1528-1531.
    3. Beaudin, M., et al., Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy for sustainable development, 2010. 14(4): p. 302-314.
    4. Nguyen, T.X., et al., Advanced High Entropy Perovskite Oxide Electrocatalyst for Oxygen Evolution Reaction. Advanced Functional Materials, 2021. 31(27): p. 2101632.
    5. Walter, M.G., et al., Solar water splitting cells. Chemical Reviews, 2010. 110(11): p. 6446-6473.
    6. Chen, Z., H.N. Dinh, and E. Miller, Photoelectrochemical water splitting. Vol. 344. 2013: Springer.
    7. Maeda, K. and K. Domen, Photocatalytic water splitting: recent progress and future challenges. The Journal of Physical Chemistry Letters, 2010. 1(18): p. 2655-2661.
    8. Liao, C.-H., C.-W. Huang, and J. Wu, Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts, 2012. 2(4): p. 490-516.
    9. Tang, W., et al., Advanced noble-metal-free bifunctional electrocatalysts for metal-air batteries. Journal of Materiomics, 2021.
    10. Wang, H., et al., Perovskite oxides as bifunctional oxygen electrocatalysts for oxygen evolution/reduction reactions–A mini review. Applied Materials Today, 2019. 16: p. 56-71.
    11. Ren, S., et al., Bifunctional electrocatalysts for Zn–air batteries: recent developments and future perspectives. Journal of Materials Chemistry A, 2020. 8(13): p. 6144-6182.
    12. Wang, H.-F. and Q. Xu, Materials Design for Rechargeable Metal-Air Batteries. Matter, 2019. 1(3): p. 565-595.
    13. Lee, D.U., et al., Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries. Journal of Materials Chemistry A, 2016. 4(19): p. 7107-7134.
    14. Blurton, K.F. and A.F. Sammells, Metal/air batteries: their status and potential—a review. Journal of Power Sources, 1979. 4(4): p. 263-279.
    15. Zhang, X., et al., Recent progress in rechargeable alkali metal–air batteries. Green Energy & Environment, 2016. 1(1): p. 4-17.
    16. Liu, M., et al., Nanoscale structure design for high‐performance Pt‐based ORR catalysts. Advanced Materials, 2019. 31(6): p. 1802234.
    17. Wang, B., Recent development of non-platinum catalysts for oxygen reduction reaction. Journal of Power Sources, 2005. 152: p. 1-15.
    18. Lee, Y., et al., Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. The journal of physical chemistry letters, 2012. 3(3): p. 399-404.
    19. Wang, C., et al., Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. Chinese Chemical Letters, 2021. 32(7): p. 2108-2116.
    20. Zhou, L., S.Y. Lu, and S. Guo, Recent progress on precious metal single atom materials for water splitting catalysis. SusMat, 2021. 1(2): p. 194-210.
    21. Zhu, Y., W. Zhou, and Z. Shao, Perovskite/Carbon Composites: Applications in Oxygen Electrocatalysis. Small, 2017. 13(12).
    22. Hwang, J., et al., Perovskites in catalysis and electrocatalysis. Science, 2017. 358(6364): p. 751-756.
    23. Gupta, S., et al., Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media. Chemistry–An Asian Journal, 2016. 11(1): p. 10-21.
    24. Zhu, Y., et al., A perovskite nanorod as bifunctional electrocatalyst for overall water splitting. Advanced Energy Materials, 2017. 7(8): p. 1602122.
    25. Petrie, J.R., et al., Enhanced bifunctional oxygen catalysis in strained LaNiO3 perovskites. Journal of the American Chemical Society, 2016. 138(8): p. 2488-2491.
    26. Ahmad, E., et al., The stability of LaMnO 3 surfaces: a hybrid exchange density functional theory study of an alkaline fuel cell catalyst. Journal of Materials Chemistry A, 2013. 1(37): p. 11152-11162.
    27. Nguyen, T.X., et al., Advanced High Entropy Perovskite Oxide Electrocatalyst for Oxygen Evolution Reaction. Advanced Functional Materials, 2021. 31(27).
    28. Fujiwara, N., et al., Bifunctional electrocatalysts of lanthanum-based perovskite oxide with Sb-doped SnO2 for oxygen reduction and evolution reactions. Journal of Power Sources, 2020. 451: p. 227736.
    29. Elumeeva, K., et al., A Simple Approach towards High‐Performance Perovskite‐Based Bifunctional Oxygen Electrocatalysts. ChemElectroChem, 2016. 3(1): p. 138-143.
    30. Lee, D.G., et al., Conductivity‐Dependent Completion of Oxygen Reduction on Oxide Catalysts. Angewandte Chemie, 2015. 127(52): p. 15956-15959.
    31. Chen, D., et al., Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chemical Reviews, 2015. 115(18): p. 9869-9921.
    32. Mohamed, R., et al., Understanding the influence of carbon on the oxygen reduction and evolution activities of BSCF/carbon composite electrodes in alkaline electrolyte. Ecs Transactions, 2014. 58(36): p. 9.
    33. Rincón, R.A., et al., Evaluation of perovskites as electrocatalysts for the oxygen evolution reaction. ChemPhysChem, 2014. 15(13): p. 2810-2816.
    34. Nishio, K., et al., Effects of carbon on oxygen reduction and evolution reactions of gas-diffusion air electrodes based on perovskite-type oxides. Journal of Power Sources, 2015. 298: p. 236-240.
    35. Nishio, K., et al., Oxygen reduction and evolution reactions of air electrodes using a perovskite oxide as an electrocatalyst. Journal of Power Sources, 2015. 278: p. 645-651.
    36. Hardin, W.G., et al., Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal–air battery electrodes. The journal of physical chemistry letters, 2013. 4(8): p. 1254-1259.
    37. Davari, E. and D. Ivey, Bifunctional electrocatalysts for Zn–air batteries. Sustainable Energy & Fuels, 2018. 2(1): p. 39-67.
    38. Bian, J., et al., Mg doped perovskite LaNiO3 nanofibers as an efficient bifunctional catalyst for rechargeable zinc–air batteries. ACS Applied Energy Materials, 2019. 2(1): p. 923-931.
    39. Shafi, P.M., et al., Enhanced electrochemical performances of agglomeration-free LaMnO3 perovskite nanoparticles and achieving high energy and power densities with symmetric supercapacitor design. Chemical Engineering Journal, 2018. 338: p. 147-156.
    40. Nakayama, S., LaFeO3 perovskite-type oxide prepared by oxide-mixing, co-precipitation and complex synthesis methods. Journal of materials science, 2001. 36(23): p. 5643-5648.
    41. Zhang, J., PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. 2008: Springer Science & Business Media.
    42. Yeager, E., Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. Journal of Molecular Catalysis, 1986. 38(1): p. 5-25.
    43. Bard, A.J., L.R. Faulkner, and H.S. White, Electrochemical methods: fundamentals and applications. 2022: John Wiley & Sons.
    44. Nørskov, J.K., et al., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. The Journal of Physical Chemistry B, 2004. 108(46): p. 17886-17892.
    45. Tripković, V., et al., The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations. Electrochimica Acta, 2010. 55(27): p. 7975-7981.
    46. Stamenkovic, V., et al., Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angewandte Chemie International Edition, 2006. 45(18): p. 2897-2901.
    47. Li, C., et al., Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today, 2018. 21: p. 91-105.
    48. Suen, N.-T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 2017. 46(2): p. 337-365.
    49. Zhu, Y., W. Zhou, and Z. Shao, Perovskite/carbon composites: applications in oxygen electrocatalysis. Small, 2017. 13(12): p. 1603793.
    50. Hammer, B., Special sites at noble and late transition metal catalysts. Topics in Catalysis, 2006. 37(1): p. 3-16.
    51. Matsumoto, Y., H. Yoneyama, and H. Tamura, Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel oxide and related oxides. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 79(2): p. 319-326.
    52. Matsumoto, Y., H. Yoneyama, and H. Tamura, Influence of the nature of the conduction band of transition metal oxides on catalytic activity for oxygen reduction. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977. 83(2): p. 237-243.
    53. Bockris, J.O.M. and T. Otagawa, The electrocatalysis of oxygen evolution on perovskites. Journal of the Electrochemical Society, 1984. 131(2): p. 290.
    54. Trasatti, S., Physical electrochemistry of ceramic oxides. Electrochimica Acta, 1991. 36(2): p. 225-241.
    55. Wang, S., et al., Universal brønsted-evans-polanyi relations for c–c, c–o, c–n, n–o, n–n, and o–o dissociation reactions. Catalysis Letters, 2011. 141(3): p. 370-373.
    56. Suntivich, J., et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem, 2011. 3(7): p. 546-50.
    57. Suntivich, J., et al., A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 2011. 334(6061): p. 1383-1385.
    58. Kalubarme, R.S., et al., LaNixCo1-xO3-δ perovskites as catalyst material for non-aqueous lithium-oxygen batteries. Journal of the Electrochemical Society, 2014. 161(6): p. A880.
    59. Wang, Z., et al., Nickel-Doped La0. 8Sr0. 2Mn1–x Ni x O3 Nanoparticles Containing Abundant Oxygen Vacancies as an Optimized Bifunctional Catalyst for Oxygen Cathode in Rechargeable Lithium–Air Batteries. ACS applied materials & interfaces, 2016. 8(10): p. 6520-6528.
    60. Du, Z., et al., Electrocatalytic performances of LaNi1− xMgxO3 perovskite oxides as bi-functional catalysts for lithium air batteries. Journal of Power Sources, 2014. 265: p. 91-96.
    61. Zhang, D., et al., Active LaNi 1− x Fe x O 3 bifunctional catalysts for air cathodes in alkaline media. Journal of Materials Chemistry A, 2015. 3(18): p. 9421-9426.
    62. Kim, J., et al., Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. Journal of the American Chemical Society, 2014. 136(42): p. 14646-14649.
    63. Guo, Y., et al., Engineering the electronic state of a perovskite electrocatalyst for synergistically enhanced oxygen evolution reaction. Advanced Materials, 2015. 27(39): p. 5989-5994.
    64. Zhu, Y., et al., SrNb0. 1Co0. 7Fe0. 2O3− δ perovskite as a next‐generation electrocatalyst for oxygen evolution in alkaline solution. Angewandte Chemie, 2015. 127(13): p. 3969-3973.
    65. Yagi, S., et al., Covalency-reinforced oxygen evolution reaction catalyst. Nature communications, 2015. 6(1): p. 1-6.
    66. Zhou, S., et al., Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nature communications, 2016. 7(1): p. 1-7.
    67. Calle-Vallejo, F., et al., Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides, Chem. 2013, Sci.
    68. Xu, X., et al., Toward enhanced oxygen evolution on perovskite oxides synthesized from different approaches: a case study of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ. Electrochimica Acta, 2016. 219: p. 553-559.
    69. Hong, W.T., R.E. Welsch, and Y. Shao-Horn, Descriptors of oxygen-evolution activity for oxides: a statistical evaluation. The Journal of Physical Chemistry C, 2016. 120(1): p. 78-86.
    70. KA, H.W.R.M.S. and A. Grimaud, Suntivich J. Shao-Horn Y. Energy Environ. Sci, 2015. 8: p. 1404.
    71. Seo, M.H., et al., Design of highly active perovskite oxides for oxygen evolution reaction by combining experimental and ab initio studies. Acs Catalysis, 2015. 5(7): p. 4337-4344.
    72. Rong, X., J. Parolin, and A.M. Kolpak, A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. Acs Catalysis, 2016. 6(2): p. 1153-1158.
    73. Mefford, J.T., et al., Water electrolysis on La1− xSrxCoO3− δ perovskite electrocatalysts. Nature communications, 2016. 7(1): p. 1-11.
    74. Du, J., et al., Nonstoichiometric perovskite CaMnO3− δ for oxygen electrocatalysis with high activity. Inorganic chemistry, 2014. 53(17): p. 9106-9114.
    75. Chen, C.-F., et al., Oxygen-deficient BaTiO3− x perovskite as an efficient bifunctional oxygen electrocatalyst. Nano Energy, 2015. 13: p. 423-432.
    76. Zhu, Y., et al., Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chemistry of Materials, 2016. 28(6): p. 1691-1697.
    77. Gao, R., et al., The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li–O 2 batteries. Journal of Materials Chemistry A, 2015. 3(34): p. 17598-17605.
    78. Cheng, F., et al., Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies. Angewandte Chemie International Edition, 2013. 52(9): p. 2474-2477.
    79. Lee, J.-H., et al., The role of vacancies and defects in Na 0.44 MnO 2 nanowire catalysts for lithium–oxygen batteries. Energy & Environmental Science, 2012. 5(11): p. 9558-9565.
    80. Bao, J., et al., Ultrathin spinel‐structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angewandte Chemie, 2015. 127(25): p. 7507-7512.
    81. Ma, T.Y., et al., Mesoporous MnCo 2 O 4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. Journal of Materials Chemistry A, 2014. 2(23): p. 8676-8682.
    82. Zhu, Y., et al., Influence of crystal structure on the electrochemical performance of A-site-deficient Sr 1− s Nb 0.1 Co 0.9 O 3− δ perovskite cathodes. RSC Advances, 2014. 4(77): p. 40865-40872.
    83. Li, L., et al., ACS Catal. 5, 4825 (2015).
    84. Diaz-Morales, O., et al., Iridium-based double perovskites for efficient water oxidation in acid media. Nature communications, 2016. 7(1): p. 1-6.
    85. Zhu, Y., et al., An Aurivillius Oxide Based Cathode with Excellent CO2 Tolerance for Intermediate‐Temperature Solid Oxide Fuel Cells. Angewandte Chemie International Edition, 2016. 55(31): p. 8988-8993.
    86. Wu, G., et al., A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal. Angewandte Chemie International Edition, 2016. 55(4): p. 1340-1344.
    87. Menezes, P.W., et al., Cobalt–manganese‐based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions. ChemSusChem, 2015. 8(1): p. 164-171.
    88. Zhou, W. and J. Sunarso, Enhancing bi-functional electrocatalytic activity of perovskite by temperature shock: A case study of LaNiO3− δ. The Journal of Physical Chemistry Letters, 2013. 4(17): p. 2982-2988.
    89. Jung, J.I., et al., Fabrication of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3–δ catalysts with enhanced electrochemical performance by removing an inherent heterogeneous surface film layer. Advanced Materials, 2015. 27(2): p. 266-271.
    90. Jung, J.I., et al., Tunable internal and surface structures of the bifunctional oxygen perovskite catalysts. Advanced Energy Materials, 2015. 5(24): p. 1501560.
    91. Jung, J.I., et al., A bifunctional perovskite catalyst for oxygen reduction and evolution. Angewandte Chemie, 2014. 126(18): p. 4670-4674.
    92. Lee, J.G., et al., A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3 and BaNi0. 83O2. 5. Journal of the American Chemical Society, 2016. 138(10): p. 3541-3547.
    93. Zhu, Y., et al., Phosphorus-Doped Perovskite Oxide as Highly Efficient Water Oxidation Electrocatalyst in Alkaline Solution. Advanced Functional Materials, 2016. 26(32): p. 5862-5872.
    94. Fabbri, E., et al., Superior bifunctional electrocatalytic activity of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3‐δ/carbon composite electrodes: insight into the local electronic structure. Advanced Energy Materials, 2015. 5(17): p. 1402033.
    95. Elumeeva, K., et al., Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes. Electrochimica Acta, 2016. 208: p. 25-32.
    96. Poux, T., et al., Dual role of carbon in the catalytic layers of perovskite/carbon composites for the electrocatalytic oxygen reduction reaction. Catalysis Today, 2012. 189(1): p. 83-92.
    97. Malkhandi, S., et al., Electrocatalytic activity of transition metal oxide-carbon composites for oxygen reduction in alkaline batteries and fuel cells. Journal of the Electrochemical Society, 2013. 160(9): p. F943.
    98. Hermann, V., et al., Mechanistic studies of oxygen reduction at La0. 6Ca0. 4CoO3-activated carbon electrodes in a channel flow cell. Electrochimica Acta, 2000. 46(2-3): p. 365-372.
    99. Appleby, A. and J. Marie, Kinetics of oxygen reduction on carbon materials in alkaline solution. Electrochimica Acta, 1979. 24(2): p. 195-202.
    100. Li, X., et al., Electrocatalytic activities of La0. 6Ca0. 4CoO3 and La0. 6Ca0. 4CoO3-carbon composites toward the oxygen reduction reaction in concentrated alkaline electrolytes. Journal of the Electrochemical Society, 2011. 158(5): p. A597.
    101. Otowa, T., R. Tanibata, and M. Itoh, Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas separation & purification, 1993. 7(4): p. 241-245.
    102. Lozano-Castello, D., et al., Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon, 2007. 45(13): p. 2529-2536.
    103. Raymundo-Pinero, E., et al., KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon, 2005. 43(4): p. 786-795.
    104. Zhou, R., et al., Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. ACS Catalysis, 2016. 6(7): p. 4720-4728.
    105. Garcia, A.C. and M.T.M. Koper, Effect of Saturating the Electrolyte with Oxygen on the Activity for the Oxygen Evolution Reaction. ACS Catalysis, 2018. 8(10): p. 9359-9363.
    106. Cullity, B.D., Elements of X-ray Diffraction. 1956: Addison-Wesley Publishing.
    107. Seah, M., The quantitative analysis of surfaces by XPS: A review. Surface and Interface Analysis, 1980. 2(6): p. 222-239.
    108. Long, D.A., Raman spectroscopy. New York, 1977. 1.
    109. Reimer, L., Transmission electron microscopy: physics of image formation and microanalysis. Vol. 36. 2013: Springer.
    110. Zhang, Z. and M. Greenblatt, Synthesis, structure, and properties of Ln4Ni3O10-δ (Ln= La, Pr, and Nd). Journal of Solid State Chemistry, 1995. 117(2): p. 236-246.
    111. Bardestani, R., G.S. Patience, and S. Kaliaguine, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 2019. 97(11): p. 2781-2791.
    112. Liu, H., et al., Fabrication of Macroporous/Mesoporous Carbon Nanofiber Using CaCO3 Nanoparticles as Dual Purpose Template and Its Application as Catalyst Support. The Journal of Physical Chemistry C, 2013. 117(41): p. 21426-21432.
    113. Liu, M.-j., et al., Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template. New Carbon Materials, 2018. 33(4): p. 316-323.
    114. Erşan, Y.Ç., et al., Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cement and Concrete Research, 2016. 83: p. 19-30.
    115. Wang, J., et al., Ba0.5Sr0.5Co0.8Fe0.2O3−δ on N-doped mesoporous carbon derived from organic waste as a bi-functional oxygen catalyst. International Journal of Hydrogen Energy, 2016. 41(25): p. 10744-10754.
    116. Ge, X., et al., Efficient and durable oxygen reduction and evolution of a hydrothermally synthesized La(Co0.55Mn0.45)0.99O3−δ nanorod/graphene hybrid in alkaline media. Nanoscale, 2015. 7(19): p. 9046-9054.
    117. Ran, J., et al., Modulation of Electronics of Oxide Perovskites by Sulfur Doping for Electrocatalysis in Rechargeable Zn–Air Batteries. Chemistry of Materials, 2020. 32(8): p. 3439-3446.
    118. Li, R., et al., Sulfur-doped LaNiO3 perovskite oxides with enriched anionic vacancies and manipulated orbital occupancy facilitating oxygen electrode reactions in lithium-oxygen batteries. Materials Today Chemistry, 2022. 24: p. 100889.
    119. Park, H.W., et al., Perovskite-Nitrogen-Doped Carbon Nanotube Composite as Bifunctional Catalysts for Rechargeable Lithium-Air Batteries. ChemSusChem, 2015. 8(6): p. 1058-1065.
    120. Jin, C., et al., Electrochemical study of Ba0.5Sr0.5Co0.8Fe0.2O3 perovskite as bifunctional catalyst in alkaline media. International Journal of Hydrogen Energy, 2013. 38(25): p. 10389-10393.

    無法下載圖示 校內:2027-08-25公開
    校外:2027-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE