簡易檢索 / 詳目顯示

研究生: 劉川綱
Liu, Chuan-Gang
論文名稱: 都會型光網路流量行為效能改善與公平性解決之研究
Performance improvement and fairness resolution of traffic flows in optical metropolitan area networks
指導教授: 李忠憲
Li, Jung-Shian
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 94
中文關鍵詞: 彈性封包環都會型光網路公平機制傳輸控制協定群播流量
外文關鍵詞: fairness scheme, TCP, multicast traffic, RPR networks
相關次數: 點閱:90下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現行的網路裡,光通訊的進步促使骨幹網路與都會型網路的基礎架構普遍地使用光通訊系統,光網路龐大的頻寬滿足現行應用程式對網路的需求,一個新穎IEEE 802.17彈性封包環都會型光網路提供有效的封包傳輸與通訊可靠度,然而它內部運作的公平機制卻可能導致現行傳輸控制協定流量的效能低落,在這篇博士論文中我們利用分析模型去研究現行傳輸控制協定流量如何受彈性封包環網路內公平機制的影響,並且發展出兩種機制去改善傳輸控制層流量的效能。一種是設計緩衝區去容納突然的流量,另一種則是設計一個健全的主動式佇列管理機制。我們發現第一種方法在彈性封包環網路下會因各種網路情形而需不同的緩衝區大小,另一種方法會有比較好的效能表現。而且我們進一步研究發現佇列管理機制內的參數若不能隨網路環境改變則會使傳輸控制協定流量效能變差,因此我們提出一個隨彈性封包環網路傳回訊號變動之新穎的佇列管理機制,因為每個彈性封包環網路下的網路節點都會傳現在網路可用頻寬通知上游的網路節點,所以佇列管理機制加入此一訊息將可以使佇列內封包數呈現平穩,透過一些模擬演練各種網路場景,第二種新穎的佇列管理機制確實有比較好的表現。
      此外我們也嘗試在彈性環網路下設計一個快速收歛的公平機制,在這個機制下每個網路節點都可以快速地利用估計出之未約束流量數目去計算公平速率,而且可以避免發生於彈性封包環網路公平機制下流量不穩定的震盪。我們的機制不需要記憶任何的資料就進行估計所以既簡單又具擴充性,利用模擬也證實我們的公平演算法確實比彈性封包環網路與之前前人所發展的DVSR有相近的效能表現。
      之後我們進行有關於彈性封包環光網路下的群播流量的效能研究,發現現行光網路由於技術限制無法提高光波通道使用率,導致光通訊成本提高,為解決這些問題許多研究一直在進行中,我們發現以電路交換為基礎的網路在最近將是主流,並且根據此一技術發展我們的光通訊網路,此一網路可以有效地支援單一或群播流量,並有效地增加光波通道的使用效率,我們在這篇博士論文內也對此一網路進行分析發現確實有很好的效能表現,最後我們將研究觸角延伸到一般網路上的多點對多點傳輸公平性的研究,傳輸控制層的流量無法保證各種網路流量的公平性,我們發展我們的演算法去滿足各種網路公平參數,此一演算法是利用ABR的回傳機制將現行網路分配之公平速率給每個發送端,而這公平速率是利用每個路由器上估計主動式或被約束的流量的權重去計算出現行網路通過各路由器之公平速率,我們所建議分散式網路可以達到多點對多點網路公平性定義。

    Nowadays, the advance of optical communication dominates the deployment of backbone and metropolitan area networks. Great bandwidth of the optical networks meets the increasing demand of current applications. Resilient Packet Ring (RPR), a novel IEEE 802-series MAC scheme over optical network for Metropolitan Area Networks (MAN), provides flexible data efficient delivery and optical transmission reliability.
    However, RPR fairness scheme causes TCP performance degradation. In this dissertation, an analytical traffic model is developed to study the impact of congestion control of TCP under RPR AM fairness scheme. Basically, two possible ways may be able to improve this impact, to equip a buffer to accommodate the burst or to employ a robust active queue management (AQM). However, buffer requirement in RPR networks may be different for various network scenarios and AQM scheme should be better for RPR networks. Furthermore, our study shows that TCP works not well if queue management parameters are fixed at a value. Hence, a novel adaptive queue management scheme with RPR feedback information is proposed. Available bandwidth for each ingress aggregated flow should be passed to its upstream nodes in RPR MAC scheme. Accordingly, queue management design parameters could be adaptively tuned to achieve better queueing behavior. Through detailed simulations in various scenarios, our proposed schemes are able to improve TCP performance obviously.
    Additionally,we propose a fast-convergent fairness scheme in IEEE 802.17 RPR networks. In the proposed scheme, each station could rapidly approach fair rate by estimating number of unbounded flows at each link. In addition, the fast-convergent scheme could prevent rate oscillations in the RPR AM scheme under unbalanced traffic. The estimation mechanism is simple and scalable since it is stateless without per-flow management. Through analytical and simulation evaluations, our scheme showed stable and speedy, when compared with 802.17 RPR fairness scheme or the proposed DVSR scheme.
    Then, we study the performance of multicast traffic in RPR networks. We discover the low usage of wavelength channel in legacy optical network with native limitation. This cause high cost of optical equipment. To improve this issue, many researches have been developed. We find circuit-based switch optical network is feasible in near future. Based on this technique, we propos a new optical network which can support unicast and multicast traffic and increase the usage of wavelength. In this dissertation, we make several analyses and confirm its performance.
    Finally, we discuss the multipoint-to-multipoint fairness in general network. TCP can not ensure the fairness among flows. We define several fairness parameters and propose our algorithm. This algorithm use ABR to inform senders with fair rates. Fair rate in a router is computed with the estimation of weights of active and bounded flows. Our distributed algorithm can achieve the multipoint-to-multipoint fairness.

    摘要 III Abstract V 誌謝 VII Contents VIII Figures X Tables XIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Overview of RPR Networks 3 1.3 Motivation 6 1.4 Organization of the Dissertation 7 Chapter 2 The Performance Evaluation of TCP in RPR Optical Networks 9 2.1 TCP Protocol 9 2.2 TCP over RPR Networks 10 2.3 Analytical Model 11 2.3.1 Issue of TCP over RPR 12 2.3.2 Analytical Approach 14 2.3.3 Simulations 19 Chapter 3 Improve TCP Performance with a Novel Adaptive Queue Management Scheme in RPR Optical Networks 22 3.1 Minimal Buffer Requirement 22 3.1.1 Discussion on a Single TCP Connection 23 3.1.2 Discussion of Multiple TCP Connections 25 3.1.3 Simulations 25 3.2 Active Queue Management in RPR Networks 28 3.2.1 Control Theoretic Analysis 29 3.2.2 Capacity-adaptive RED 31 3.2.3 Simulations 33 Chapter 4 Fairness Procedure for Resource Allocation Problems in IEEE 802.17 RPR Networks: A Fast-convergent Solution 44 4.1 Background 44 4.2 Existing RPR Fairness Scheme 44 4.2.1 RIAS 44 4.2.2 Fair Rate Computation for AM and CM 45 4.2.3 DVSR 47 4.3 The Proposed Fairness Scheme 47 4.3.1 Necessary Information 47 4.3.2 Number-of-Unbounded-Flows Estimator 48 4.3.3 Fair-Rate Estimator 48 4.4 Discussion 51 4.5 Simulations 53 Chapter 5 Unicast and multicast traffic management in optical networks 59 5.1 Background 59 5.2 Related work 62 5.3 An Efficient Circuit-based Switch Optical Network Architecture for Unicast and Multicast Traffic 64 5.3.1 Our proposed architecture 64 5.3.2 Performance analysis 68 5.3.3 Numerical results 76 Chapter 6 Achieving multipoint-to-multipoint fairness 78 6.1 Introduction 78 6.2 Various Fairmess Definitions 78 6.3 Rate-Control with Normalized Weight Assignment 80 6.4 Simulation Results 82 Chapter 7 Conclusions 88 Bibliography 90

    [1] IEEE 802.17 RPR working group, http://grouper.ieee.org/groups/802/17/.
    [2] IEEE standard 802.17, Resilient Packet Ring (RPR) access method and physical layer
    specifications, Sep. 24, 2004.
    [3] Randy Bird, “Emerging Optical Technologies: Resilient Packet Ring and Passive Optical Networks,” http://tcpmag.com/features/article.asp?EditorialsID=45, July 2002.
    [4] D. Tsiang and G. Suwala, “The Cisco SRP MAC Layer Protocol,” RFC 2892, Aug. 2000.
    [5] I. Cidon and Y. Ofek, “Metaring—a full-duplex ring with fairness and spatial reuse,” IEEE Transaction on Communication, Vol. 41, pp. 110–120, Jan. 1993.
    [6] L. Tassiulas and J. Joung, “Performance measures and scheduling policies in ring networks,” IEEE/ACM Transaction on Networking, Vol. 4, pp.576–584, Oct. 1995.
    [7] V. Gambiroza, P. Yuan, L. Balzano, Y. Liu, S. Sheafor, and E. Knightly, ”Design, Analysis, and Implementation of DVSR: A Fair, High Performance Protocol for Packet Rings,” IEEE/ACM Transaction on Networking, , Vol.12, Feb. 2004.
    [8] V. Firoiu and M. Borden, “A study of active queue management for congestion control,” In Proceedings of IEEE/INFOCOM, Mar. 2000, Vol. 3, pp. 1435-1444.
    [9] Vishal Misra, Don Towsley, and Wei-Bo ong, ”Fluid-based Analysis of a network of AQM Routers supporting TCP Flows with an Application to RED,” in Proceedings of ACM/SIGCOMM, 2000, pp. 151-160.
    [10] W. Stevens, “TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms,”RFC 2001, Jan. 1997.
    [11] Ren Fengyuan, Lin Chuan, Ying Xunhe, Shan Xiuming, Wang Fubao, “A robust active queue management algorithm based on sliding mode variable structure control,” in Proceedings of IEEE INFOCOM, 2002, Vol. 1, pp. 13-20.
    [12] C.V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, ”On designing improved controllers for AQM routers supporting TCP flows,” in Proceedings of IEEE INFOCOM, 2001, Vol. 3, pp. 1726-1734.
    [13] RIAS, [Online], http://www.ece.rice.edu/networks/RIAS/rias.pdf.
    [14] Martin May, Thomas Bonald, and Jean-Chrysostome Bolot, “Analytic Evaluation of RED Performance,” in Proceedings of IEEE/INFOCOM, Mar. 2000, Vol 3, pp. 1414-1425.
    [15] The Network Simulator – ns-2, [Online], http://www.isi.edu/nsnam/ns/.
    [16] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang, “Recommendations on queue management and congestion avoidance in the internet,” RFC 2309, Apr. 1998.
    [17]C.V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong, “A Control Theoretic Analysis of RED,” in Proceedings of IEEE/INFOCOM, Apr. 2001, Vol. 3, pp. 1510-1519.
    [18] Jung-Shian Li, Chuan-Gang Liu, “Improve RPR fairness convergence,” in Proceedings of IEEE APCCAS, Dec. 2004, Vol. 1, pp. 469-472.
    [19] Gene F. Franklin, J. David Powell, and Abbas Emami-Naeini, “Feedback Control of Dynamic System,” Addison-Wesley, 1995.
    [20]S. Athuraliya, S. H. Low, V. H. Li, and Q. Yin, ” REM: Active Queue Management, ” IEEE Network Magazine, Vol. 15, pp. 48-53, May/June 2001.
    [21] V. Jacobson, “Modified TCP congestion avoidance algorithm,” message to end2end-interest mailing list, Apr. 1990, URL ftp://ftp.ee.lbl.gov/email/ vanj.90apr30.txt.
    [22] V. Jacobson, “Congestion avoidance and control,” in Proceedings of ACM/SIGCOMM 88, Aug. 1988, pp. 314–329.
    [23] A. Kumar, “Comparative performance analysis of versions of TCP in a local network with a lossy link,” ACM/IEEE Transaction on Networking, Vol. 6, pp.485-498, Aug. 1998.
    [24]T. V. Lakshman and U. Madhow, “The performance of TCP/IP for networks with high bandwidth-delay products and random loss,” IEEE/ACM Transaction on Networking, Vol. 5, pp. 336–350, June 1997.
    [25] M.J. Francisco, F. Yuan, ” A comparison of two buffer insertion ring architectures with fairness algorithms,” ICC '03. IEEE International Conference on ,11-15 May 2003, Vol. 1, pp.605-609.
    [26] A. Parekh and R. Gallager, “A generalized processor sharing approach to flow control in integrated services networks: the single-station case,” IEEE/ACM Transaction on Networking, Vol. 1, pp. 344–357, June 1993.
    [27] Shokrani, A. Khorsandi, S. Lambadaris, I. Khan, L.,”Virtual queuing: an efficient algorithm for bandwidth management in resilient packet rings,” ICC '05. IEEE International Conference on , 16-20 May 2005, Vol. 2, pp. 982-988.
    [28] RIAS C code, [Online], http://www.ece.rice.edu/networks/RIAS/code/.
    [29] IEEE Draft P802.17/D3.0, Nov. 12, 2003.
    [30] James Aweya, Michel Ouellette and Delfin Y. Montuno, “A multi-queue TCP window control scheme with dynamic buffer allocation,” Journal of Systems Architecture, Vol. 49, pp. 369-385, Oct. 2003.
    [31] S.W. Ng and Edward Chan, “Equation-based TCP-friendly congestion control under lossy environment,” Journal of Systems Architecture, Vol. 51, pp. 542-569, Sep. 2005.
    [32] Dong-Hun LEE, Jae-Hwoon LEE, “A Novel Fairness Mechanism Based on the Number of Effective Nodes for Efficient Bandwidth Allocation in the Resilient Packet Ring,” IEICE transaction on communication, Vol. E89-B, pp. 1526-1533, May 2005.
    [33] Tae-Joon KIM, “An Enhanced Fairness Algorithm for the IEEE 802.17 Resilient
    Packet Ring,” IEICE transaction on communication, Vol. E88–B, pp. 2182-2184, May 2005.
    [34] Yan F. Robichaud and Changcheng Huang, “Improved fairness algorithm to prevent tail node induced oscillations in RPR,” ICC '05. IEEE International Conference on, 16-20 May 2005, Vol. 1, pp. 402- 406.
    [35] Fredrik Davik, Amund Kvalbein, Stein Gjessing, “Improvement of Resilient Packet Ring Fairness,” GLOBECOM '05. IEEE International Conference on, 28 Nov.-2 Dec. 2005, Vol. 1, pp. 581-586.
    [36] Jung-Shian Li, Chuan-Gang Liu, “Improve TCP performance with a novel adaptive queue management scheme in IEEE 802.17 RPR optical networks,” Computer Networks , Vol. 50, pp. 2762-2786, Oct. 2006.
    [37] F. Alharbi and N. Ansari, “SSA: simple scheduling algorithm for resilient packet ring networks,” in IEE Proceedings of Communication., Vol. 153, pp. 183-188, Apr. 2006.
    [38] Mike J. O’ Mahony et al., “The application of optical packet switching in future communication networks,” IEEE communications, pp. 128-135, Mar. 2001.
    [39] Hui Zang; Jue, J.P.; Mukherjee, B. “Capacity allocation and contention resolution in a photonic slotrouting all-optical WDM mesh network,” Lightwave Technology, Vol.18, pp.1728 – 1741, Dec. 2000.
    [40] T. Battestilli, H. Perros, “An introduction to optical burst switching,” IEEE Communications Magazine, Vol.41, pp. S10~15, Aug. 2003.
    [41] Mellia, M.; Leonardi, E.; Feletig, M.; Gaudino, R.; Neri, F, “Exploiting OTDM technology in WDM networks,” in Proceedings of the IEEE INFOCOM 2002, Vol.3, pp. 1822 – 1831.
    [42] Farahmand, F.; Xiaodong Huang; Jue, J. P. “Efficient online traffic grooming algorithms in WDM mesh networks with drop-and-continue node architecture” in Proceeding of BROADNET’s 04, 25-29 Oct. 2004, pp. 180 – 189.
    [43] Widjaja, I.; Saniee, I.; Giles, R.; Mitra, D. “Light core and intelligent edge for a flexible, thin-layered, and cost-effective optical transport network,” Communications Magazine, Vol.41 , pp. S30 - S36, May 2003.
    [44] A. Gumaste and I. Chlamtac, "Light-trails: an optical solution for IP transport [Invited]," Journal of Optical Networking, Vol. 3, pp. 261-281, 2004.
    [45] Frederick, M.T.; VanderHorn, N.A.; Somani, A.K. “Light trails: a sub-wavelength solution for optical networking,” High Performance Switching and Routing, HPSR. 2004 Workshop on, pp. 175 – 179, 2004.
    [46] Ashwin Gumaste, Paparao Palacharla, “Heuristic and optimal techniques for light-trail assignment in optical ring WDM networks,” Computer Communications, Vol.30, pp. 990-998, March 2007.
    [47] N. Bouabdallah, H. Perros, “Cost-effective single-hub WDM ring networks: A proposal and analysis,” Computer Networks, Vol.51, pp. 3878-3901, 12 Sep. 2007
    [48] A. Gumaste, Light-Trails and Light-Frame Architectures for Optical Networks, Ph.D. Thesis, Fall 2003, UT-Dallas.
    [49] N. Bouandallah, A.L. Beylot, E. Dotaro and G. Pujolle, Resolving the fairness issues in bus-based optical access networks, IEEE Journal on Select Areas Communications, Vol. 23, pp. 1444–1457, 2005.
    [50] D. Bertsekas and R. Gallager, Data Networks, chapter 6, pp.524-529, Prentice-Hall,1987.
    [51] J. Ros, and W. K. Tsai, “A Theory of Convergence order of max-min rate allocation and an optimal protocol,” in Proceedings of IEEE INFOCOM, Vol.2, pp.717 - 726, 2001.
    [52] J. Padhye, V. Firoiu, D. Towsley, J. Kurose, “Modeling TCP Throughput: A Simple Model and its Empirical Validation”, in proceedings of ACM SIGCOM, 1998, Vol. 28, pp.303-314.
    [53] B. Bloom. “Space/time Trade-offs in Hash Coding with Allowable Errors”, Communications of the ACM, Vol. 13, pp. 422-426, July 1970.
    [54] C. Estan, G. Varghese, and M. Fisk, “Bitmap algorithms for counting active flows on high speed links”, IEEE/ACM Transactions on Networking, Vol.14, pp 925- 937, Oct. 2006
    [55] P. Mehra, A. Zakhor, and C. D. Vleeschouwer, “Receiver-Driven Bandwidth Sharing for TCP”, in Proceedings of IEEE INFOCOM, March-3 April 2003, Vol.2, pp. 1145-1155.
    [56] S. Balasubramanian, W. He, and A. Somani, “Light trail networks: design and survivability.” Lab-Technical-Report, 2005.
    [57] Hui Zang, Jason P. Jue, Biswanath Mukherjee, “A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks,” Optical networks magazine, Vol.1, pp. 47-60, Jan. 2000.
    [58] C. Qiao, M. Yoo, “Optical burst switching (OBS)—a new paradigm for an optical Internet,” Journal of High Speed Networks, Vol. 8, pp. 69–84, 1999.
    [59] V. Vokkarane, J. Jue, S. Sitaraman, “Burst segmentation: an approach for reducing packet loss in optical burst switched networks,” in Proceedings of IEEE ICC, Apr. 2002, Vol. 5, pp.2673–2677.
    [60] Yong-Xiang Zhao, Chang-Jia Chen, “A redundant overbooking reservation algorithm
    for OBS/OPS networks,” Computer networks, Vol. 51, pp. 3919-3934, Sep. 2007.
    [61] R. Ramaswami, K.N. Sivarajan, “Optical Networks: A Practical Perspective,” Morgan Kaufmann Publishers, 1998.
    [62] T.S. El-Bawab, J.-D. Shin, “Optical packet switching in core networks: between vision and reality,” IEEE Communication Magazine, Vol. 40, pp. 60-65, 2002.
    [63] G.I. Papadimitriou, C. Papazoglou, A.S. Pomportsis, “Optical switching: switch fabrics, techniques, and architectures,” Journal of Lightwave Technology, Vol. 21, pp. 384-405, 2003.
    [64] M. Jonsson, “Optical interconnection technology in switches, routers, and optical cross connects,” Optical Networks Magazine, Vol. 4, pp.20-34, 2003.
    [65] S. Yoo, Optical-packet switching and optical-label switching technologies for the next generation optical Internet,” in Proceedings of OFC, 2003, Vol. 2, pp. 797–798.

    下載圖示 校內:2009-01-30公開
    校外:2009-01-30公開
    QR CODE