| 研究生: |
徐蓓貝 Hsu, Pei-Pei |
|---|---|
| 論文名稱: |
金屬閘極以氟化鋰為緩衝層在五環素薄膜電晶體之應用 Gate Metals with An Ultra-thin Lithium Fluoride Buffer Layer for Pentacene-Based Organic Thin Film Transistors Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | PVP 、金屬閘極 、粗糙度 、氟化鋰 、五環素 、有機薄膜電晶體 、有機發光二極體 |
| 外文關鍵詞: | PVP, organic light emitting diode, pentacene, organic thin film transistor, metal gate electrode, roughness, LiF |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文運用多種金屬如:鋁、鉿、鉭、鈦、鋯與銦氧化鍚(ITO)等在玻璃基板上作為閘極電極,以五環素(pentacene)為主動層所架構而成的有機薄膜電晶體‧藉由濺鍍而形成的閘極電極為基板而後覆蓋一層介電層 PVP(poly(4-vinylphenol))與有著同樣閘極電極與一層介電層而二者之間插入一層極薄的氟化鋰(LiF)來比較,並探討其帶來的影響‧由於五環素仍舊是現今有機薄膜電晶體 p-type半導體的首選,因此將其作為此次實驗的主動層,並且採用容易製程的PVP作為此實驗的介電層,能夠藉由旋轉塗佈的方式為其一大特色‧
經由實驗結果發現金屬閘極, 例如鉿、鋯、鉭、鋁、鈦和ITO,以超薄的LiF為緩衝層在五環素為主動層所架構而成的有機薄膜電晶體,可明顯地提高電流、移動率和開關比率。由結果顯示得知,插入一層LiF在介電層之間和閘極電極能夠使表面粗糙度減少進而增加五環素的顆粒大小。 這歸因於一部分改進表面的表現。 在此,我們將LiF成膜應用於閘極電極與介電層之間,當氟化鋰薄膜為10埃時發現電流開關比 (103) 有相當明顯的改進。金屬閘極電極在玻璃基板上與LiF能成功地整合成一金屬閘極電極的五環素薄膜電晶體。 相較於所有使用的金屬中, 對有機薄膜電晶體而言,ITO閘極電極俱有最高的功函數,顯示了最佳的電晶體特性。
Various metal gate electrodes, including aluminum (Al), hafnium (Hf), tantalum (Ta), titanium (Ti), zirconium (Zr), and other materials such as Indium Tin Oxide (ITO) on glass substrates, were applied to the fabrication of pentacene-based organic thin film transistors. By sputtering deposition on substrates, the metal gate electrodes have poly (4-vinyl phenol) (PVP) as insulator layers over substrate. When compared with the metal gate electrodes with an ultra-thin lithium fluoride films as substrate, this group of electrodes also had an insulator layer that generated effects. Subsequently, the pentacene was primarily selected in p-type organic thin-film transistors. For this reason, the pentacene served as the active layer, while the PVP served as an insulator layer that was easily manufactured for use in spinning and coated in this experiment.
It has been found that gate metals such as Hf, Zr, Ta, Al, Ti, and ITO, with an ultra-thin LiF buffer layer for pentacene-based OTFTs, can enhance the drain current, mobility, and on/off ratio significantly. As the results showed, the inserted LiF layer between the dielectric and gate electrode could result in decrease of the surface roughness and increase of grain size of pentacene film. This is attributed in part to improve device performance. Here, we deposit an ultra-thin LiF film between gate electrode and dielectric layer in pentacene-based OTFTs. The on/off current ratio (up to 103) is obviously improved as thickness of the LiF film is approximately 5.0 nm. The metal gate electrodes on the glass substrate with LiF could be successfully integrated into a metal-gated pentacene TFT. Compared with the metals used in the study, the ITO gate electrode, which had the highest work function for OTFTs, showed the best transistor performance.
[1] M. Pope, and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed., Oxford University Press, Oxford, 337 (1999)
[2] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene /polysiloxane interface,” J. Appl. Phys., 54, 3255 (1983)
[3] K. Kudo, M. Yamashina, and T. Moriizumi, “Field Effect Measurement of Organic Dye Films,” Jpn. J. Appl. Phys, 23, 130 (1984)
[4] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., 49, 1210 (1986)
[5] C. D. Dimitrakopoulos, and D. J. Mascaro, IBM “Organic thin film transistors: A review of recent advances,” J. Res. Dev., 45, 11 (2001)
[6] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J.-L. Bredas, P. C. Ewbank, and K. R. Mann, “Introduction to organic thin film transistors and design of n-channel organic semiconductors,” Chem. Mater., 16, 4436 (2004)
[7] B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z. Bao, ” Electronic sensing of vapors with organic transistors,” Appl. Phys. Lett., 78, 2229 (2001)
[8] C. D. Dimitrakopoulos, and P. R. L. Malenfant, “Organic thin film transistors for large area electronics,” Adv. Mater., 14, 99 (2002)
[9] A. Kraft, “Organic field-effect transistors - the breakthrough at last,” ChemPhysChem 2, 163 (2001)
[10] F. Würthner, and Angew. “Plastic transistors reach maturity for mass applications in microelectronics,” Chem. Int. Ed., 40, 1037 (2001)
[11] J. Veres, S. Ogier, G. Lloyd, and Dago de Leeuw, “Gate Insulators in Organic Field-Effect Transistors,” Chem. Mater., 16, 4543 (2004)
[12] Kingon, Angus I. , Maria, Jon-Paul, Streiffer, and S. K. “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature, 406, 1032 (2000)
[13] S. E. Fritz, T. W. Kelley, and C. D. Frisbie, “Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer,” J. Phys. Chem. B, 109, 10574 (2005)
[14] Y. Y. Lin, Student Member, IEEE, David J. Gundlach, Shelby F. Nelson, and Thomas N. Jackson, Member, IEEE, “Pentacene-Based Organic Thin-film Transistors,” IEEE Trans. on Elec. Devs., 44, 8 (1997)
[15] Y. G.. Seol, J.G. Lee, and N. E. Lee “Effects of different electroplated gate electrodes on electrical performances of flexible organic thin film transistor and flexibility improvement,” Org. Elec. 8, 513 (2007)
[16] D. K. Hwang, J. M. Choi, J. H. Park, J. H. Kim, E. Kiman, and S. Im, “Low-Voltage Pentacene Thin-Film Transistor with a Polymer/YOx/Polymer Triple-Layer Dielectric on a Plastic Substrate,” Electrochemical and Solid-State Letters, 10, 4 (2007)
[17] H. Klauk, M. Halik, Ute Zschieschang, G. Schmid, W Radlik, and W. Weber, “High-mobility polymer gate dielectric pentacene thin film transistors,” J. of Appl. Phys., 92, 9 (2002)
[18] Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Appl. Phys. Letts., 80, 1 (2002)
[19] I. Kymissis, C. D. Dimitrakopoulos and S. Purushothaman, “Patterning pentacene organic thin film transistors,” J. Vac. Sci. Technol. B, 20, 3 (2002)
[20] E. Lifshitz, Z. Chen, and L. Bykov, “Optical Spectroscopy of 1T-SnS2 Single Crystal,” J. Phys. Chem., 97, 238 (1993)
[21] F. Zhu, B. Low, K. Zhang, and S. Chua, “Lithium–fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices”, Appl. Phys. Lett., 79, 8 (2001)
[22]Hong-Jian Yeh, “The Effect of An Ultra-thin Lithium Fluoride Film on Pentacene-Based Organic Thin Film Transistors,” Master thesis, chap. 3, sect. 3.3, page 28-29 (2006)
[23] M. T. Zhao, B. P. Singh, and P. N. Prasad, “A systematic study of polarizability and microscopic third-order optical nonlinearity in thiophene oligomers,” J. Chem. Phys. 89, 5535 (1988 )
[24] D. Beljonne, Z. Shuai, and J. L. Brédas, “Theoretical study of thiophene oligomers: Electronic excitations, relaxation energies, and nonlinear optical properties”, J. Chem. Phys., 98, 8819 (1993)
[25] G.. Horowitz, and M. E. Hajlaoui, “Mobility in polycrystalline olgothiophene field-effect transistors dependent on grain size,” Adv. Mater., 12, 1046 (2000)
[26] Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Organic field-effect transistors with high mobility based on copper phthalocyanine,” Appl. Phys. Lett., 69, 4108 (1996)
[27] R. Cervin, A.B. Holmes, S. C. Moratti, A. Köhler, and R.H. Friend, “Synthesis of new conjugated thiophene polymers,” Synthetic Metals., 76, 169 (1996)
[28] L. Burgi, T.J. Richards, R. H. Friend, and H. Sirringhaus, “Close look at charge carrier injection in polymer field-effect transistors,” J. Appl. Phys., 94, 6129 (2003)
[29] Y. Y. Lin, D. J. Gundlach, S.F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letts., 18, 12 (1997)
[30] J. G.. Laquindanum, H.E. Katz, A. J. Lovinger, and A. Dodabalapur, “Morphological Origin of High Mobility in Pentacene Thin-Film Transistors,” Chem. Mater.,8, 2542 (1996)
[31] D. J. Gundlach, C. C. Kuo, S. F. Nelson, and T. N. Jackson, “Organic thin film transistors with field effect mobility >2 cm 2/V-s,” Proceedings 57th Dev. Res. Conf. Digest, 164 (1999)
[32] S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, and C. H. Chang, “Influence of postannealing on polycrystalline pentacene thin film transistor,” J. Appl. Phys. 95, 2293 (2004)
[33] C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, and J. M. Shaw, “Low-Voltage Organic Transistors on Plastic Comprising High-Dielectric Constant Gate Insulators,” Science, 283, 822 (1999)
[34] M. Matsumura, K. Furukawa, and Yukitoshi Jinde, “Effect of Al/LiF Cathodes on emission effciency of organic EL devices,” Thin Solid Films, 331, 1 (1998)
[35] K. Ihm, T. H. Kang, K. J. Kim, C. C. Hwang, Y. J. Park, K. B. Lee, B. Kim, C. H.. Jeon, C. Y. Park, K. Kim, and Y. H. Tak, “Band bending of LiF/Alq3 interface in organic light-emitting diodes,” Appl. Phys. Lett., 83, 14 (2003)
[36] S. J. Kang, D. S. Park, S. Y. Kim, C. N. Whang, K. Jeong, and S. Im, “Enhancing the electroluminescent properties of organic light-emitting devices using a thin NaCl layer,” Appl. Phys. Lett., 81, 2581 (2002)
[37] Y. Min Kim, J. Won Lee, J. H. Jung, K. K. Paek, M. Y. Sung, J. K. Kim, and B. K. Ju, “Enhanced Brightness and Efficiency of Organic Light-Emitting Diodes With an LiF in the Alq3,” IEEE Elect. Dev. Letts., 27, 7 (2006)
[38] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, and P. L. Burns†, “HolmesLight-emitting diodes based on conjugated polymers,” Nature, 347, 539 (1990)
[39] G.. Gustafsson, Y. Cao, G.. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, “Flexible light-emitting diodes made from soluble conducting polymers,” Nature, 357, 477 (1992)
[40] W. Hu, Y. Zhao, J. Hou, C. Ma, and S. Liu, “Improving the performance of the organic thin-film transistors with thin insulating lithium fluoride buffer layer,” Micro. Journal, 38, 632 (2007)
[41] K. H. Kim, K. W. Bong, and H. H. Lee, “Alternative to pentacene patterning for organic thin film transistor,” Appl. Phys. Lett., 90, 093505 (2007)
[42] J. B. Koo, J. W. Lim, S. H. Kim, S. J. Yun, C. H. Ku, S. C. Lim, J. H. Lee “Pentacene thin-film transistors and inverters with plasma-enhanced atomic-layer-deposited Al2O3 gate dielectric,” Thin Solid Films, 515, 3132 (2007)
[43] W. Li, Student Member, IEEE, Robert A. Jones, student Member, IEEE, “Maximizing Alq3 OLED Internal and External Efficiencies: Charge Balanced Device Structure and Color Conversion Outcoupling Lenses,” J. of Dis. Tech., 2, 2 (2006)
[44] G.. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, and S. R. Forrest, “High-external-quantum-efficiency organic light-emitting devices,” Opts. Letts., 22, 6 (1997)
[45] Paul V. Pesavento, Reid J. Chesterfield, Christopher R. Newman, and C. Daniel Frisbie, “Gated four-probe measurements on pentacene thin-film transistors:Contact resistance as a function of gate voltage and temperature,” J. of Appl. Phys., 96, 12 (2004)
[46] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik, “High-mobility polymer gate dielectric pentacene thin film transistors,” J. of Appl. Phys., 92, 9 (2002)
[47] G.. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen, and N. Peyghambarian, “Highly efficient and bright organic electroluminescent devices with an aluminum cathode,” Appl. Phys. Lett., 71 , 29 (1997)
[48] D. S. Park, I. S. Jeong, C. Y. Kim, W. C. Jang, K. Jeong, K. H. Yoo, C. N. Whang, Y. S. Lee, and S. O. Kim, “The influence of thin insulating lithium fluoride inserted pentacene layer on pentacene-based organic thin-film transistors,” Thin Solid Films, 495, 385 (2006)
[49] T. Jentzsch, H. J. Juepner, K. W. Brzezinka and A. Lau, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure,” Thin Solid Films, 315, 273 (1998)
[50] I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth1, and T. M. Klapwijk, “Morphology identification of the thin film phases of vacuum evaporated pentacene on SiO2 substrates,” Synthetic Metals, 104, 175 (1999)
[51] A. Di Carloal, F. Piacenza, A. Bolognesi, B. Stadlober, and H. Maresch, “Influence of grain sizes on the mobility of organic thin-film transistors,” Appl. Phys. Lett., 86, 263501 (2005)
[52] A.Bolognesi, A.D. Carlo, and P. Lugli, “Influence of carrier mobility and contact barrier height on the electrical characteristics of organic transistors,” Appl. Phys. Lett., 81, 4646 (2002)
[53] S. Steudel, S. De Vusser S. De Jonge, D. Janssen, S. Verlaak, J. Genoe, and P. Heremans, “Influence of the dielectric roughness on the performance of pentacene transistors,” Appl. Phys. Lett., 85, 19 (2004)
[54] J. Puigdollers, C. Voz, A. Orpella, R. Quidant, I. Martın, M. Vetter, and R. Alcubilla, “Pentacene thin-film transistors with polymeric gate dielectric,” Org. Electron.,5, 67 (2004)
[55] A. R. Vo¨lkel, R. A. Street, and D. Knipp, “Carrier transport and density of state distributions in pentacene transistors,” Phys. Rev., 66, 195336 (2002)
[56] S. Verlaak, V. Arkhipov, and P. Heremansa, “Modeling of transport in polycrystalline organic semiconductor films,” Appl. Phys. Lett., 82, 5 (2003)
[57] H. Ren, and S. T. Wua, “Tunable electronic lens using a gradient polymer network liquid crystal,” Appl. Phys. Lett., 82, 22 (2003)
[58] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman “High-Performance Bottom electrode organic thin-film transistors,” IEEE Trans. Elec. Devis., 48, 6 (2001)
[59] D. J. Gundlach, L. L. Jia, and T. N. Jackson, “Electrode Organic Thin-Film Transistors,” IEEE Elec. Devis Letts, 22, 12 (2001)
[60] K. Lee, J. H. Kim, and S. Im, “Probing the work function of a gate metal with a top-gate ZnO-thin-film transistor with a polymer dielectric,” Appl. Phys. Lett., 88, 023504 (2006)
[61] R. Schlaf, B. A. Parkinson, P. A. Lee, K. W. Nebesny, G. Jabbour, B. Kippelen, N. Peyghambarian, and N. R. Armstrong, “Photoemission spectroscopy of LiF coated Al and Pt electrodes,” J. of Appl. Phys., 84, 12 (1998)
[62] J. Veres, S.D. Ogier, S.W. Leeming, D.C. Cupertino, and S. M. Khaffaf, “Low-k Insulators as the Choice of Dielectrics in Organic Field-Effect Transistors,” Adv. Funct. Mater., 13, 3 (2003)