| 研究生: |
韓宗衛 Han, Tzung-Wei |
|---|---|
| 論文名稱: |
以全向移動機器人為致動器之二維倒單擺平衡暨軌跡追蹤控制 Balance and Tracking Control of a Spherical Inverted Pendulum with an Omnidirectional Mobile Robot |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 284 |
| 中文關鍵詞: | 卡門濾波器 、二維倒單擺 、全向移動機器人 、輸出調節控制 |
| 外文關鍵詞: | Kalman filter, spherical inverted pendulum, omnidirectional mobile robot, output regulation control |
| 相關次數: | 點閱:148 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在將倒單擺系統結合全向移動機器人,以建構二維倒單擺平衡暨軌跡追蹤控制系統。論文主要分兩部分;(一)首先將以Euler-Lagrange方法建立倒單擺系統之動態數學模型,並針對此模型利用線性輸出調節控制法則與非線性輸出調節控制法則,設計平衡暨軌跡追蹤控制器。(二)由摩擦力觀點推導全向移動機器人數學模型,並透過MATLAB/Simulink軟體模擬光學編碼器因滑動造成軌跡誤差情形,再由光學編碼器與慣性感測器結合擴展型卡門濾波器,對全向移動機器人位置與姿態進行濾波並作為回授訊號進行軌跡追蹤控制,使滑動造成的軌跡誤差下降。在實作上,本系統使用德州儀器公司(Texas Instruments, TI)所生產的數位訊號處理器TMS320F2812做為控制核心以實現所有控制法則,並配合周邊介面電路,進而完成倒單擺平衡暨軌跡追蹤控制與以慣性導航之軌跡追蹤控制。
The objective of this thesis is to design tracking control for a spherical inverted pendulum system with an omnidirectional mobile robot. There are two parts in this thesis: First, the Euler-Lagrange method is used to derive the dynamic model of the spherical inverted pendulum system.the linear output regulation control law and nonlinear output regulation control law are designed for balance and tracking control of this system. Second, the dynamic model of the omnidirectional mobile robot with friction is derived. MATLAB/Simulink software is used to simulate the situation of slippage when feedback signals are provided by encoders. To improve the tracking performance an extended Kalman filter is used for predicting the position and attitude with an inertial measurement unit and encoders. In the experiments, the designed controllers are implemented on a digital signal processor (TMS320F2812) produced by Texas Instruments. Finally, combining the digital signal processor with the relevant peripheral interface circuits, balance and tracking control of the spherical inverted pendulum system actuated by an omnidirectional mobile robot is achieved.
[1] J. F. Schaefer and R. H. Cannon, “On the Control of Unstable Mechanical Systems,” Proceedings of the 3rd International Federation on Automatic Control (IFAC), Vol. 1, 1967.
[2] J. Collado, R. Lozano, and I. Fantoni, “Cotrol of Convey-Crane Based on Passivity,” Proceedings of the American Control Conference, pp. 1260-1264, 2000.
[3] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-Up Control of Inverted Pendulum Using Pseudo-State Feedback,” Journal of Systems and Control Engineering, Vol. 206, pp. 263-269, 1992.
[4] M. Spong and D. J. Block, “The Pendubot: A Mechatronic System for Control Research and Education,” Proceedings of the 34th IEEE Conference on Decision and Control, Vol. 1, pp. 555-556, 1995.
[5] O. S. Reza, “Global Stabilization of a Flat Underactuated System: The Inertia Wheel Pendulum,” Proceedings of the 40th IEEE Conference on Decision and Control, Vol. 4, pp. 3764-3765, 2001.
[6] J. Huang, Nonlinear Output Regulation: Theory and Applications: SIAM, 2004.
[7] 邱萬鍾,「以全向移動機器人為致動器之二維倒單擺平衡控制」,國立成功大學工程科學系碩士論文,民國九十九年。
[8] K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, and T. Fukuda, “Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots,” Journal of Intelligent and Robotic Systems, Vol. 22, No. 3, pp. 315-330, 1998.
[9] R. Balakrishna and A. Ghosal, “Modeling Slip for Wheeled Mobile Robots,” IEEE Transactions on Robotics and Automation, Vol. 11, No. 1, pp. 126-132, 1995.
[10] R. L. Williams, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic Model with Slip for Wheeled Omnidirectional Robots,” IEEE Transactions on Robotics and Automation, Vol. 18, No. 3, pp. 285-293, 2002.
[11] T. Kalmar-Nagy, R. D’Andrea, and P. Ganguly, “Near-optimal Dynamic Trajectory Generation and Control of an Omnidirectional Vehicle,” Robotics and Autonomous Systems, Vol. 46, pp. 47-64, 2004.
[12] J. Wu, R. L. Willians, and J. Lew, “Velocity and Acceleration Cones for Kinematic and Dynamic Constraints on Omnidirectional Mobile Robots,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 128, No. 4, pp. 788-799, 2006.
[13] G. Liu, D. Nesic, and I. Mareels, “Non-linear Stable Inversion Based Output Tracking Control for a Spherical Inverted Pendulum,” International Journal of Control, Vol. 81, pp. 116-133, 2008.
[14] L. Consolini and M. Tosques, “A Homotopy Method for Exact Output Tracking of some Non-minimum Phase Nonlinear Control Systems,” International Journal of Robust and Nonlinear Control, Vol. 19, pp. 1168-1196, 2009.
[15] L. Postelnik, G. Liu, K. Stol, and A. Swain, “Approximate Output Regulation for a Spherical Inverted Pendulum,” Proceedings of 2011 American Control Conference, pp. 539 – 544, 2011.
[16] Z. Ping and J. Huang, “Approximate Output Regulation of Spherical Inverted Pendulum by Neural Network Control,” Neurocomputing, Vol. 85, pp. 38-44, 2012.
[17] T. J. Tarn, P. Sanposh, D. Cheng, and M. Zhang, “Output Regulation for Nonlinear Systems: some Recent Theoretical and Experimental Results,” IEEE Transactions on Control Systems Technology, Vol. 13, No. 4, pp. 605-610, 2005.
[18] E. J. Davison, “The Robust Control of a Servomechanism Problem for Linear Time-invariant Multivariable System,” IEEE Transactions on Automatic Control, Vol. 21, No. 1, pp. 25–34, 1976.
[19] C. A. Desoer and Y. T. Wang, “Linear Time-invariant Robust Servomechanism Problem: A Self-contained Exposition,” Control Dyn. Syst., Vol. 16, pp. 81–129, 1980.
[20] B. A. Francis, “The Linear Multivariable Regulator Problem,” SIAM J. Control Optim., Vol. 15, pp. 486–505, 1977.
[21] B. A. Francis and W. M. Wonham, “The Internal Iodel Principle of Control Theory,” Automatica, Vol. 12, pp. 457–465, 1976.
[22] A. Isidori and C. I. Byrnes, “Output Regulation of Nonlinear Systems,” IEEE Transactions on Automatic Control, Vol. 35, No. 2, pp. 131–140, 1990.
[23] J. Huang and W. J. Rugh, “On a Nonlinear Multivariable Servomechanism Problem,” Automatica, Vol. 26, No. 6, pp. 963–972, 1990.
[24] J. Huang and W. J. Rugh, “Stabilization on Zero-error Manifolds and the Nonlinear Servomechanism Problem,” IEEE Transactions on Automatic Control, Vol. 37, No. 7, pp. 1009–1013, 1992.
[25] A. J. Krener, “The Construction of Optimal Linear and Nonlinear Regulators,” in Systems, Models and Feedback, Theory and Applications, A. Isidori and T. J. Tarn, Eds. Cambridge, MA: Birkhauser, 1992.
[26] J. Huang, “On the Solvability of the Regulator Equations for a Class of Nonlinear Systems,” IEEE Transactions on Automatic Control, Vol. 48, No.5, pp. 880 - 885, 2003.
[27] H. K. Khalil, “Robust Servomechanism Output Feedback Controllers for a Class of Feedback Linearizable Systems,” Automatica, Vol. 30, No. 10, pp. 1587–1599, 1994.
[28] A. Isidori, Nonlinear Control Systems, 3rd ed. Berlin, Germany: Springer-Verlag, 1995.
[29] C. I. Byrnes, F. D. Priscoli, and A. Isidori, Regulation of Uncertain Nonlinear Systems, Boston, MA: Birkhäuser, 1997.
[30] A. Serrani and A. Isidori, “Global Robust Output Regulation for a Class of Nonlinear Systems,” Syst. Control Lett., Vol. 39, pp. 133–139, 2000.
[31] Z. Ding, “Global Output Regulation of Uncertain Nonlinear Systems with Exogenous Signals,” Automatica, Vol. 37, pp. 113–119, 2001.
[32] T. Chen and J. Huang, “Global Robust Output Regulation by State Feedback for Strict Feedforward Systems,” IEEE Transactions on Automatic Control, Vol. 54, No. 9, pp. 2157-2163, 2009.
[33] Z. Ding, “Output Regulation of Uncertain Nonlinear Systems with Nonlinear Exosystems,” IEEE Transactions on Automatic Control, Vol. 51, No. 3, pp. 498-503, 2006.
[34] J. Huang and Z. Y. Chen, “A General Framework for Tackling the Output Regulation Problem,” IEEE Transactions on Automatic Control, Vol. 49, pp. 2203-2218, 2004.
[35] A. Isidori, L. Marconi, and A. Serrani, Robust Autonomous Guidance, London, U.K.: Springer, 2003.
[36] A. Pavlov, N. van de Wouw, and H. Nijmeijer, Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach, Boston, MA: Birkhäuser, 2005.
[37] J. Huang and W. J. Rugh, “An Approximation Method for the Nonlinear Servomechanism Problem,” IEEE Transactions on Automatic Control, Vol. 37, No. 9, pp. 1395–1398, Sep. 1992.
[38] Y .C. Chu and J. Huang, “A Neural Network Method for Nonlinear Servomechanism Problem,” IEEE Transactions on Neural Networks, Vol. 11, pp. 1412–1423, 1999.
[39] B. Rehák and S. Čelikovský, “Numerical Method for the Solution of the Tegulator Equation with Application to Nonlinear Tracking,” Automatica, Vol. 44, No. 5, pp. 1358–1365, 2008.
[40] Z. Lin , M. Glauser, T. Hu , and P. E. Allaire, “Magnetically Suspended Balance Beam with Disturbances: A Test Rig for Nonlinear Output Regulation,” Proceedings of the 43rd IEEE Conference on Decision and Control, Vol. 5, pp. 4577-4582, 2004.
[41] T. J. Tarn, P. Sanposh, D. Cheng, and M. Zhang, “Output Regulation for Nonlinear Systems: Some Recent Theoretical and Experimental Results,” IEEE Transactions on Control Systems Technology, Vol. 13, No. 4, pp. 605-610, 2005.
[42] A. Pavlov, B. Janssen, N. van de Wouw, and H. Nijmeijer, “Experimental Output Regulation for a Nonlinear Benchmark System,” IEEE Transactions on Control Systems Technology, Vol. 15, No. 4, pp. 786-793, 2007.
[43] C. Bonivento, A. Isidori, L. Marconi, and A. Paoli, “Implicit Fault-tolerant Control: Application to Induction Motors,” Automatica, Vol. 40, No. 3, pp. 355-371, 2004.
[44] A. Isidori, L. Marconi, and A. Serrani, “Autonomous Vertical Landing on an Oscillating Platform: an Internal-model Based Approach,” Automatica, Vol. 38, No. 1, pp. 21-32, 2001.
[45] A. Isidori, L. Marconi, and A. Serrani, “Robust Nonlinear Motion Control of a Helicopter,” IEEE Transactions on Automatic Control, Vol. 48, No. 3, pp. 413–426, 2003.
[46] J. Huang and G. Hu, “A Control Design for the Nonlinear Benchmark Problem Via the Output Regulation Method,” J. Control Theory Appl., Vol. 2, No. 1, pp. 11–19, 2004.
[47] 林鈺翔,「雙連桿倒單擺系統甩上與平衡控制」,國立成功大學工程科學系碩士論文,民國九十一年。
[48] 洪介仁,「車與桿倒單擺系統之平衡控制」,國立成功大學工程科學系碩士論文,民國九十二年。
[49] 凌朝雄,「慣性輪單擺之非線性控制」,國立成功大學工程科學系碩士論文,民國九十三年。
[50] 詹富強,「以數位信號處理器為基礎單板獨立旋轉型倒單擺甩上與平衡控制系統之實現」,國立成功大學工程科學系碩士論文,民國九十三年。
[51] 楊志偉,「以視覺伺服為基礎之倒單擺系統平衡控制」,國立成功大學工程科學系碩士論文,民國九十四年。
[52] 洪聆剛,「兩輪倒單擺機器人之平衡控制」,國立成功大學工程科學系碩士論文,民國九十九年。
[53] 翁義清,「全向移動機器人之路徑追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年。
[54] 徐嘉明,「以視覺伺服為基礎之全向移動機器人追蹤控制」,國立成功大學工程科學系碩士論文,民國九十六年。
[55] 顏忠逸,「即時物體追蹤之立體視覺導引全向移動機器人之研製」,國立成功大學工程科學系碩士論文,民國九十八年。
[56] 李岳翰,「以全向移動機器人為致動器之旋轉型倒單擺平衡控制」,國立成功大學工程科學系碩士論文,民國九十九年。
[57] 劉士源,「以回授線性化與順滑模態控制之球與球系統的平衡控制」,國立成功大學工程科學系碩士論文,民國九十七年。
[58] B. Olson, S. Shaw, and G. Stepan, “Nonlinear Dynamics of Vehicle Traction,” Vehicle System Dynamics, Vol. 40, No. 6, pp. 377–399, 2003
[59] E. Bakker, L. Nyborg, and H. Pacejka, “Tyre Modelling for Use in Vehicle Dynamics Studies,” Society of Automotive Engineers, Vol. 2, No. 870421, pp. 190–204, 1987.
[60] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Department of Computer Science, University of North Carolina at Chapel Hill, 2006.
[61] 楊宗諭,「以顏色為基礎之多相機追蹤控制系統設計與實現」,國立成功大學工程科學系碩士論文,民國一○一年。
[62] Altera Cyclone FPGA EP1C12Q240C8 datasheet.
[63] 1/2.5-Inch 5Mp CMOS Digital Image sensor MT9P001 datasheet.
[64] Texas Instrument TMS320DM6437 Digital Media Processor datasheet.
[65] Rajesh Rajamani, Vehicle Dynamics and Control: SPIN, 2006.
[66] M. Amodeo and A. Ferrara, “Wheel Slip Control via Second-Order Sliding-Mode Generation,” IEEE Transactions on Intelligent Transportation Systems, Vol. 11, No. 1, pp. 122–131, 2010.