| 研究生: |
姜信維 Chiang, Hsin-wei |
|---|---|
| 論文名稱: |
化學氣相沉積氮化鎵奈米結構及其性質分析 Preparation and Characterization of GaN Nanostructures by Chemical Vapor Deposition |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 化學氣相沉積 、氮化鎵 |
| 外文關鍵詞: | GaN, CVD |
| 相關次數: | 點閱:76 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是去探討氮化鎵的奈米結構,實驗中使用簡單的管型加熱氣氛爐(Thermal CVD)來成長試片。由於不同實驗參數的改變,可以得到兩種不同的氮化鎵奈米結構,奈米線及角錐。藉由SEM、TEM、 PL及CAFM,分析生成物的形貌及其性質。
氮化鎵奈米線的成長方向為[ ],其橫截面為三角形。奈米線的長度可達數十微米,尺寸約為100奈米。光激發光譜中,在3.407eV(364nm)可觀察到NBE的發光帶;也觀察到因缺陷而產生的黃光帶。藉由導電式原子力顯微鏡量測氮化鎵奈米線的電流-電壓曲線,經計算得知奈米線的蕭基阻障高度約0.373eV。而在氮化鎵角錐方面,從SEM上看來,所生成的氮化鎵角錐在某些方向上有著規則性的排列。在10~300K這個溫度區間去作變溫PL,明顯看到三個發光帶:2.279 eV (544nm),3.226 eV (384nm)及 3.456 eV (359nm)。經計算,氮化鎵角錐的內部量子效率為12.3%。
This research uses thermal chemical vapor deposition to grow the nanostructures of gallium nitride. By changing experimental parameters, we get two different GaN nanostructures, nanowire and pyramid. The synthesized products are characterized by scanning and transmission electron microscopy, photoluminescence spectroscopy and conducting atomic force microscopy.
The nanowires grow alone the [2-1-10] direction with a triangular cross section. The length of the nanowires is about several micrometers, and the diameter is about 100nm. PL reveals a strong emission at 3.407eV ascribed to near band edge (NBE) recombination; while the well-known yellow luminescence band centered at 2.2 eV was also detected. Using CAFM to measure the I-V curve of the GaN nanowire, we got the schottky barrier hight of nanowire is 0.373eV.
From SEM image, the GaN pyramids have the ordering arrangement in some direction. The temperature-dependent PL spectra of the sample recorded from 10 to 300K has three peaks, 2.279 eV (544nm), 3.226 eV (384nm), and 3.456 eV (359nm). The internal quantum efficiency of GaN pyramid is 12.3%.
1.高逢時, “奈米科技”, 科學發展, 386, 66頁 (2005).
2.張立德, 牟季美, “奈米材料和奈米結構”, 滄海書局 (2002).
3.史光國, “GaN藍色發光及雷射二極體之發展現況”, 工業材料, 126, 154頁 (1997).
4.S. Yoshida, S. Misawa, and S. Gonda, Appl. Phys. Lett. 42, 427 (1983).
5.H. Amano, N. Sawaki, I. Akasaki, and Y. Toyota, Appl. Phys. Lett. 48, 353 (1986).
6.http://www.opt.ees.saitama-u.ac.jp/~zyoho/t-oka/epitaxy.html.
7.B. Gil, “Group Ⅲ Nitride Semiconductor Compounds”, Oxford, New York (1998).
8.S. Strite and H. Morkoc, J. Vac. Sci. Technol. B10, 1237 (1992).
9.賴彥霖, “氮化銦鎵(類量子點)/氮化鎵多重量子井之微結構與光學性質之研究”, 成功大學材料科學與工程學系, 博士論文 (2006).
10.莊達人, “VLSI製造技術”, 高立圖書有限公司 (2000).
11.Y. Xia and P. Yang, Adv. Mater. 15, 353 (2003).
12.R. S. Wanger and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).
13.A. M. Morales and C. M. Lieber, Science 279, 208 (1998).
14.Y. Wu and P. Yang, Chem. Mater. 12, 605 (2000).
15.Y. Wu and P. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
16.M. S. Gudiksen and C. M. Lieber, J. Am. Chem. Soc. 122, 8801 (2000).
17.C. Y. Chang and S. J. Pearton, Appl. Surf. Sci. 253, 3196 (2007).
18.T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbson, and W. E. Buhro, Science 270, 1791 (1995).
19.W. E. Buhro, K. M. Hickman, and T. J. Trentler, Adv. Mater. 8, 8 (1996)
20.P. Yang and C.M. Lieber, J. Mater. Res. 12, 2981 (1997).
21.L. X. Zhao, G. W. Meng, X. S. Peng, X. Y. Zhang, and L. D. Zhang, Appl. Phys. A 74, 587 (2002).
22.S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, MRS Bulletin 24, 36 (1999).
23.W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Zu, C. S. Lee, L. Kalish, and S. T. Lee, J. Am. Chem. Soc. 123, 11095 (2001).
24.S. T. Lee, N. Wang, and C. S. Lee, Mater. Sci. Eng. A 286, 16 (2000).
25.J. C. Hulteen and C. R. Martin, J. Mater. Chem. 7, 1075 (1997).
26.J. Liang, S. K. Hong, N. Kouklin, R. Beresford, and J. M. Xu, Appl. Phys. Lett. 83, 1752 (2003).
27.Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, J. Phys. Chem. B 101, 6661 (1997).
28.S. Biswas, S. Kar, T. Ghoshal, V. D. Ashok, S. Chakrabarti, and S. Chaudhuri, MRS Bulletin 42, 428 (2007).
29.G. S. Cheng, S. H. Chen, X. G. Zhu, Y. Q. Mao, and L. D. Zhang, Mater. Sci. Eng. A 286, 165 (2000).
30.T. Kuykendall, P. J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang, Nat. Mater. 3, 524 (2004).
31.汪建民, “材料分析”, 中國材料科學學會 (2006).
32.陳力俊, “材料電子顯微鏡學”, 國科會精儀中心 (1994).
33.徐煥棠, “摻雜稀土元素於磷砷化銦鎵之特性研究, 中原大學, 碩士論文 (2001).
34.莊榮祥, “導電式原子力顯微鏡在IC製程及故障分析之應用”, 科儀新知, 26, 6頁 (2004).
35.M. He, I. Minus, P. Zhou, S. N. Mohammed, and J. B. Halpern, Appl. Phys. Lett. 77, 3731 (2000).
36.M. He, I. Minus, P. Zhou, S. N. Mohammed, G. L. Harris, J. B. Halpern, R. Jacobs, W. L. Sarney, and S. R. Lourdes, J. Crys. Growth 231, 357 (2001).
37.J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).
38.H. M. Chen, Y. F. Chen, C. M. Lee, and M. S. Feng, Phys. Rev. B 56, 6942 (1997).
39.Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang, and J. K. Sheu, Jpn. J. Appl. Phys. 40, 2996 (2001).
40.J. R. Kin, H. Oh, H. M. So, J. J. Kim, J. Kim, C. J. Lee, and S.C. Lyu, Nanotechnology 13, 701 (2002).
41.N. Mahadik, M. V. Rao, and A. V. Davydov, J. Electronic Mater. 35, 2035 (2006).
42.T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S. Nagai, S. Yamasaki, S. Asami, N. Shibata, and M. Koike, Appl. Phys. Lett. 69, 3537 (1996).
43.M. Niebelschutz, V. Cimalla, O. Ambacher, T. Machleidt, J. Ristic, and E. Calleja, Physica E 37, 200 (2007).
44.http://www.lasurface.com./database/spectreaes.php.
45.J. S. Paek, K. K. Kim, J. M. Lee, D. J. Kim, M. S. Yi, D. Y. Noh, H. G. Kim, and S. J. Park, J .Crys. Growth 200, 55 (1999).
46.J. K. Jian, X. L. Chen, Q. Y. Tu, Y. P. Xu, L. Dai, and M. Zhao, J. Phys. Chem. B. 108, 12024 (2004).
47.S. M. Lee, M. A. Belkhir, X. Y. Zhu, Y. H. Lee, Y. G. Hwang, and T. Frauenheim, Phys. Rev. B 61, 23 (2000).
48.X. H. Lu, P. Y. Yu, L. X. Zheng, S. J. Xu, M. H. Xie, and S. Y. Tong, Appl. Phys. Lett. 82, 1033 (2003).
49.H. W. Seo, S. Y. Bae, J. Park, H. Yang, K. Soo, and S. Kim, J. Chem. Phys. 116, 9492 (2002).
50.Y. P. Varshni, Physica 34, 149 (1967).
51.M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, J Appl. Phys. 86, 3721 (1999).