簡易檢索 / 詳目顯示

研究生: 陳冠州
Chen, Kuan-Zhou
論文名稱: 高靈敏度主動開口環共振腔量測液體介電常數
High Sensitive Active Split-Ring Resonators for Measuring Permittivity of Liquid
指導教授: 楊慶隆
Yang, Chin-Lung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 主動回授網路液體濃度量測介電常數Q值開口環形共振腔高靈敏度
外文關鍵詞: Active feedback loop, Liquid concentration measurement, Permittivity, Quality factor, Split ring resonator (SRR), High sensitivity
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出應用於液體介電常數與濃度量測之高靈敏度雙主動式開口環共振腔(Dual Active Split-Ring Resonators, DA-SRR)微波感測器。藉由共振腔受外在待測物微擾(Perturbation)後所產生的共振頻率偏移以檢測待測液體之介電常數(Permittivity),並且藉由主動式回授網路(Active feedback loop)之損耗補償(Loss compensation)概念,提升傳統被動式共振腔微波感測器之品質因素(Q-factor),以提高感測器量測之靈敏度(Sensitivity),克服傳統平面式開口共振腔感測器因本身製造材質及幾何架構之有限Q值,降低量測液體或高介電常數的量測靈敏度。一般來說,高介電值待測物,將使共振腔感測頻率偏移急遽減緩,降低感測元件檢測高介電值區間之分辨效能。應用此回授型高Q值微波感測器的設計架構可提供高分辨率(Resolution)和高靈敏度以區別液體微小濃度變化。
    論文設計架構除了提高Q值之主動電路設計外,同時使用雙頻帶校正技術以準確地計算出液體濃度與介電常數。在實際量測結構中,量測液體待測物所需的量測容具(如微流管)會影響量測結果,增加誤差。在雙主動式開口環共振腔之雙共振頻率下(fL和fH),透過所提出的分析理論,僅經此結構感測器之單次性量測,即可校正微流管所造成的量測影響。
    在實際量測中,3.5~3.8 GHz操作頻率下,主動式開口環共振腔Q值由被動共振腔的49.7增加22倍到1098,因此將液體量測靈敏度提升了2.3~3.7倍,用於量測丙酮與水混合液體之濃度平均誤差為4.7 %較單一頻帶主動式開口環共振腔平均誤差6.9 %優。此技術結合雙主動電路提升Q值後不僅擁有高靈敏度的優點,並且藉由雙頻帶校正技術消除誤差項,以實現精準量測的微波介電質感測器。

    This thesis proposed a high sensitive dual active split ring resonator (DA-SRR) microwave sensors to measure the permittivity and the concentration of the liquid. Due to the external perturbation impacts caused by the materials under test (MUT) on the SRR, the resonator generates a resonant frequency offset, which can be appled to detect the dielectric constant of the MUT or the test liquids. By an active feedback network to compensate the loss of the resonantor, the quality factor (Q-factor) of the traditional passive microwave resonantor can be enlarged. Therefore, the measurement sensitivity of the microwave sensor can be improved to overcome the finite small Q value of traditional planar SRR due to its manufactured materials or its geometric structure, implying reduction of the measurement sensitivity for the liquids or high dielectric constant MUTs. Moreover, as the permittivity increases to a high dielectric value, the resonant frequency offset become marginally shift, resulting in the degradation of the sensor resolution over the range of high dielectric value MUTs. Applying this high-Q feedback microwave sensor design can provide high resolution and high sensitivity to distinguish among the small change of the liquid concentration.
    In this thesis, in addition to the high-Q design based on the active circuit, the simultaneous use of dual-band calibration techniques accurately estimate the concentration and the dielectric constant of the liquid. In practical measurement, the setup of the liquid measurement requires a container or a micro-fluid, which can affect the measurement results and increase the errors. Two resonant frequencies (fL and fH) can be obtained from DA-SRR. Based on the analytic theorem, the measurement errors caused by the mirco-flow can be calibrated simply by a single-time measurement using this proposed sensor.
    In measurement, the microwave sensor is operated over 3.5 – 3.8 GHz frequency band. The Q value of the active SRR is increased by 22 times (from 49.7 to 1098), compared by the passive resonator. Therefore, the sensitivity of the liquid measurement is improved by 2.3 to 3.7 times. By applying this proposed sensor, the measurement errors of the concentration of the test liquid (acetone-water mixture) has the average error of 4.7 %. The proposed DA-SRR not only has the advantages of high sensitivity due to the enlarged Q value but also eliminates the errors by the dual-band correction technique to fulfill a high sensitive microwave sensor for the liquid permittivity measurement.

    目 錄 第一章 緒論 1 1.1 主動式微波平面共振腔感測器的基本原理與應用 1 1.2 主動式微波平面共振腔感測器的研究背景與動機 1 1.3 主動式微波平面共振腔感測器的電路介紹 3 1.4 介電常數量測實驗簡介 3 1.5 論文架構 4 1.6 研究貢獻 5 第二章 微波技術測量介電常數設計及探討 6 2.1 介電值理論分析 6 2.2 自由空間傳輸法(FREE-SPACE TRANSMISSION TECHNIQUES) 7 2.3 開放式同軸探針法(OPEN END COAXIAL PROBE) 9 2.4 共振腔微擾法(RESONANT PERTURBANCE METHODS) 9 2.4.1 品質因素Q FACTOR 9 2.4.2 共振腔微擾法理論推導 11 2.4.3 複數介電常數推導 54 2.5文獻探討及比較 18 第三章 主動式微波介電質感測器之平面共振腔設計 20 3.1 平面共振腔優點簡介 20 3.2 互補式開口環形共振環 20 3.3 開口環共振腔感測器設計 31 3.3.1 SRR電磁模型分析 31 3.3.2 SRR開口電磁場與待測物係數萃取技術 34 3.3.3 開口環形共振腔等效電路 36 3.3.4 開口環形共振腔感測器應用及設計 38 3.3.5 結果討論 47 第四章 主動回授電路設計 48 4.1 主動式高Q值架構 48 4.2 負電阻電路設計 49 4.3 主動回授式開口環形共振腔 52 4.4 雙主動式開口環形共振腔量測技術及應用 57 第五章 量測結果與討論 61 5.1 微波感測器實現及實驗設置 61 5.2 量測結果與討論 62 第六章 結論與未來展望 67 6.1結論 67 6.2未來展望 68 參考文獻 70

    參考文獻
    [1] M. H. Zarifi, S. Farsinezhad, K. Shankar, and M. Daneshmand, “Liquid sensing using active feedback assisted planar microwave resonator,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 9, pp. 621–623, Sep. 2015.
    [2] Zarifi, Mohammad H., and Mojgan Daneshmand. "Non-contact liquid sensing using high resolution microwave microstrip resonator." In IEEEMTT-S Int. Microw. Symp. Dig., Phoenix, AZ, USA, May. 2015, pp. 1-4.
    [3] Burhan Davarcioglu, "The dielectric properties of human body tissues at electromagnetic wave frequencies," International Journal of Science and Advanced Technology, Vol.1, No. 5, July 2011.
    [4] Keysight Technologies, "Basics of measuring the dielectric properties of materials," Published in USA, May 16, 2014
    [5] K. Saeed, M. F. Shafique, M. B. Byrne, and I. C. Hunter, "Planar microwave sensors for complex permittivity characterization of materials and their applications," InTechOpen, Published in Dec 2012.
    [6] W. Withayachumnankul, K. Jaruwongrungsee, A. Tuantranont, C. Fumeaux, and D. Abbott, “Metamaterial-based microfluidic sensor for dielectric characterization,” Sens. Actuators A, Phys., vol. 189, pp. 233–237, Jan. 2013.
    [7] Y-T.Lee, J.Lee and S.Nam, “High-Q active resonators using amplifiers and their applications to low phase noise free-running and voltage-controlled oscillators,” IEEE Trans. Microwave Theory Tech., vol.52, pp.2621- 2626, Nov. 2004.
    [8] Y.-T. Lee, J. Lee, and S. Nam, “New planar high-Q active resonator and its application to low phase noise oscillators,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, June 2004, pp. 2007–2010.
    [9] D.K Ghodgaonkar, V.V Varadan and V.K. Varadan, "Free Space Measurement of Complex Permittivity and Complex Permeability of Magnetic Materials at Microwave Frequencies", IEEE Tram. of Inst. and Measurement, Vo1.39, pp.387-394, April 1990
    [10] D. M. Pozar, Microwave Engineering, 3rd ed. Hoboken, NJ: Wiley, 2005.
    [11] L. F. Chen, C.K. Ong, C. P. Neo, V. V. Varadan, Vijay K. Varadan, Microwave Electronics: Measurement and Materials Characterization, Mar. 2004.
    [12] 盧佳卉,高頻材料介電常數量測,國立清華大學物理所,民國93年.
    [13] K. Saeed, R. D. Pollard, and I. C. Hunter, “Substrate integrated waveguide cavity resonator for complex permittivity characterization of materials,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 10, pp. 2340–2347, Oct. 2008.
    [14] Humberto Lobato-Morales1, Alonso Corona-Chávez1, D. V. B. Murthy1 and José L. Olvera-Cervantes1 "Complex permittivity measurements using cavity perturbation technique with substrate integrated waveguide cavities," Review of Scientific Instruments 81, 11 June 2010,
    [15] B. Kapilevich and B. Litvak, “Optimized microwave sensor for online concentration measurements of binary liquid mixtures,” IEEE Sensors J., vol. 11, no. 10, pp. 2611–2616, Oct. 2011.
    [16] A. K. Jha and M.J.Akhtar,“Design of multilayered epsilon-nearzeromicrowave planar sensors for testing dispersive materials,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 8, pp. 2418–2426, Aug.2015.
    [17] A. A. Abduljabar, D. J. Rowe, A. Porch, and D. A. Barrow, “Novel microwave microfluidic sensor using a microstrip split-ring resonator,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 679–688, Mar. 2014.
    [18] D. J. Rowe, S. Malki, A. A. Abduljabar, A. Porch, D. A. Barrow, and C. J. Allender, “Improved split-ring resonator for microfluidic sensing,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 3, pp. 689–699, Mar. 2014.
    [19] C.-S. Lee and C.-L. Yang, “Complementary split-ring resonators for measuring dielectric constants and loss tangents,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 8, pp. 563–565, Aug. 2014.
    [20] M. S. Boybay and O. M. Ramahi, “Non-destructive thickness measurement using quasi-static resonators,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 4, pp. 217–219, Apr. 2013.
    [21] Ansari, Mohammad Arif Hussain, Abhishek Kumar Jha, and Mohammad Jaleel Akhtar. "Design and Application of the CSRR-Based Planar Sensor for Noninvasive Measurement of Complex Permittivity," IEEE Sensors J., vol. 15, no. 12, pp. 7181-7189, Dec. 2015
    [22] H. Zheng and C. E. Smith, “Permittivity measurements using a short open-ended coaxial line probe,” IEEE Microw. Guided Wave Lett., vol.1, no. 11, pp. 337–339, Nov. 1991.
    [23] M. Venkatesh and G. Raghavan, "Improvement in the accuracy of dielectric measurement of open-ended coaxial resonators by an enhanced de-embedding of the coupling network," Canadian Biosystems Engineering, vol.61, no. 12, Dec. 2013.

    [24] M. Venkatesh and G. Raghavan, "An overview of dielectric properties measuring techniques," Canadian Biosystems Engineering, vol. 47, pp. 15-30, 2005.
    [25] A. Ebrahimi, W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, “High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization,” IEEE Sensors J., vol. 14, no. 5, pp. 1345–1351, May 2014.
    [26] C.-S. Lee and C.-L. Yang, “Single compound complementary split-ring resonator for simultaneously measuring permittivity and thickness,” in IEEE MTT-S Int. Microw. Symp. Dig., Tampa, FL, USA, Jun. 2014, pp. 1–3.
    [27] Akerlof, Gosta. "Dielectric constants of some organic solvent-water mixtures at various temperatures." Journal of the American Chemical Society 54.11 (1932): 4125-4139.
    [28] G. Gennarelli, S. Romeo, M. R. Scarfi, and F. Soldovieri, “A microwave resonant sensor for concentration measurements of liquid solutions,” IEEE Sensors J., vol. 13, no. 5, pp. 1857–1864, May 2013.
    [29] L.-H. Hsieh, K. Chang, “Equivalent lumped elements G, L, C, and Unloaded Q‘s of closed- and open-loop ring resonator,” IEEE Trans. Microwave Theory Techniques, Vo1.50, 2002, pp.453-460
    [30] Zhurbenko, Vitaliy, et al. "Analytical model of planar double split ring resonator," Microwave and Optoelectronics Conference, 2007. IMOC 2007. SBMO/IEEE MTT-S International. IEEE, 2007.
    [31] J. Naqui, M. Durán-Sindreu, F. Martín, “Modeling split ring resonator (SRR) and complementary split ring resonator (CSRR) loaded transmission lines exhibiting cross polarization effects,” IEEE Ant. Wirel. Propag. Lett., vol. 12, pp. 178-181, 2013.
    [32] Sydoruk, O., et al. "Analytical formulation for the resonant frequency of split rings." Journal of Applied Physics 105.1 (2009): 014903.
    [33] A. A. Abduljabar., Xin Yang ; David A. Barrow ; Adrian Porch. "Modelling and measurements of the microwave dielectric properties of microspheres." IEEE Trans. Microw. Theory Techn., Vol.63, no.12, pp. 4492-4500, Dec. 2015.
    [34] Masood, Adnan. Microwave resonators for highly sensitive compositional analysis of solvents in microcapillary systems. Cardiff University, 2009.
    [35] M. Link, J. Weber, M. Schreiter, W. Wersing, O. Elmazria, and P. Alnot,“Sensing characteristics of high-frequency shear mode resonators in glycerol solutions,” Sensors & Actuators: B.Chemical, vol. 121, no. 2, pp. 372–378, 2007

    [36] Morteza Nick and Amir Mortazawi, “Oscillator phase-noise reduction using low-noise high-Q active resonators,” 2010 IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, 23-28 May 2010, pp. 276 – 279
    [37] Z. Chen, W. Hong, J.-X. Chen, J. Zhou, and L.-S. Li, “Low-phase noise oscillator utilising high-Q active resonator based on substrate integrated waveguide technique,” IET Micro. Antennas Propag., vol. 8, no. 3, pp. 137–144, Oct. 2013.
    [38] C.-S. Lee and C.-L. Yang, “Thickness and permittivity measurement in multi-layered dielectric structures using complementary split-ring resonators,” IEEE Sensors J., vol. 14, no. 3, pp. 695–700, Mar. 2014.
    [39] C.-S. Lee and C.-L. Yang, “Single-compound complementary splitring resonator for simultaneously measuring the permittivity and thickness of dual-layer dielectric materials,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 6, pp. 2010–2023, Jun. 2015.

    無法下載圖示 校內:2021-07-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE