簡易檢索 / 詳目顯示

研究生: 盧泰維
Lu, Tai-Wei
論文名稱: 無凝聚性土壤於反覆作用力下之回彈行為研究
Resilient Response of Cohesionless Soil Under Cyclic Loading
指導教授: 郭玉樹
Kuo, Yu-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 102
中文關鍵詞: 離岸風電基礎設計勁度衰減模型動態三軸剪力試驗勁度衰減參數回彈模數
外文關鍵詞: offshore wind, foundations design, Stiffness Degradation Model, cyclic triaxial test, resilient modulus
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於日本福島311核能災害的事件發生,我國政府於100年宣布國家新能源政策,「確保核安、穩建減核;打造綠能低碳環境;逐步邁向非核家園」,其中以離岸風力發電作為綠能的重點開發項目。我國離岸風場開發勢在必行,然而目前我國尚未完成本土化之離岸風機設計規範建立,進行離岸風機基礎設計時,各風場開商主要依循國際離岸風電先進國家之設計規範。以德國規範為例,為滿足BSH (2008)建議離岸風機基礎設計時需結合動態土壤力學試驗成果之要求,Kuo (2008)提出土壤勁度衰減模型,以無凝聚性土壤受反覆作用力下之應變量及割線模數結合樁土互制有限元素模型,計算基樁受長期反覆側向作用力下之樁身變形。
    土壤勁度衰減模型中包含兩個勁度衰減參數,主要透過動態三軸剪力試驗求得,然而勁度衰減模型的土壤應變計算式為計算永久變形量,故忽略反覆作用時土壤回彈應變的影響。然而本研究以標準砂進行五組不同應力條件之動態三軸剪力排水試驗,加載條件皆以週期10秒反覆作用10000次之反覆應力(模擬環境載重),分析無凝聚性土壤於排水條件下受反覆載重時的軸向變形反應,其中土壤軸向變形包含塑性應變及回彈應變,且分析無凝聚性土壤受反覆作用力之軸向塑性應變及軸向回彈應變,並提出回彈應變與作用次數的預測式,取得動態土壤地工參數(勁度模數、回彈模數),以期更新BSH (2008) 建議之勁度衰減模型,合理估算無凝聚性土壤受反覆應力作用下之永久應變量。

    Stiffness Degradation Model (SDM) is proposed by Kuo (2008), SDM is one of method to calculate the permanent deformation responses of offshore wind turbine foundation and is suggested by the BSH standard “Design of Offshore Wind Turbines”.SDM contains two stiffness degradation parameters, which obtained by cyclic triaxial shear test. However, the soil plastic axial strain calculation formula of the stiffness degradation model is to calculate the permanent deformation, so the soil resilient strain has ignored under one-way cyclic loading. In this study, five sets of cyclic triaxial shear drainage tests under different stress conditions with Ottawa sand. The loading conditions were repeated with 10,000 times of cyclic load (simulated environmental load) in 10 seconds per cyclic.To analyze the axial strain of cohesionless soil under drainage conditions and axial strain of the soil under cyclic load included plastic strain and resilient strain. This study proposes a formula for the resilient strain to obtain dynamic soil parameters (stiffness modulus and resilient modulus), and expects to update the stiffness degradation model recommended by the BSH (2008). It is reasonable to estimate the permanent strain under the one-way cyclic stress of cohesionless soil.

    目錄 摘要 i Extended Abstract ii 誌謝 viii 目錄 ix 圖目錄 xi 表目錄 xv 符號 xvi 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機與目的 2 1-3 研究方法 2 1-4 研究架構 3 第二章 無凝聚性土壤受力變形反應 4 2-1 土壤模數 4 2-1-1 靜態載重下之土壤模數 4 2-1-2 動態載重下之土壤模數 6 2-1-3 無凝聚性土壤回彈模數的影響因素 6 2-2 無凝聚性土壤受靜態剪力作用下之受力變形反應 9 2-3 無凝聚性土壤受反覆剪力作用下之受力變形反應 13 2-4 動態基礎勁度考量 21 第三章 無凝聚性土壤模數評估方法 24 3-1 土壤應變反應推估模型 25 3-1-1 土壤軸向塑性應變之推估式 25 3-1-2 土壤軸向回彈應變之推估式 28 3-2 勁度衰減模型 31 第四章 試驗規劃與試體條件 35 4-1 試驗規劃流程 35 4-2 試驗土樣 36 4-2-1 土壤基本物性試驗 37 4-2-2 土壤試體條件 38 4-2-3 三軸試體製作方法 40 4-3 三軸壓密排水試驗條件 41 4-3-1 靜態三軸試驗條件 41 4-3-2 動態三軸試驗條件 42 第五章 試驗結果與分析 47 5-1 三軸剪力試驗成果 47 5-1-1 靜態三軸試驗結果 47 5-1-2 動態三軸試驗結果 50 5-2 無凝聚性土壤割線模數反應 57 5-2-1 有效圍壓對勁度衰減參數之影響 57 5-2-2 反覆應力組合對勁度衰減參數之影響 62 5-3 無凝聚性土壤回彈行為 68 5-3-1 反覆作用次數對回彈模數之影響 68 5-3-2 有效圍壓對回彈模數之影響 70 5-3-3 反覆應力組合對回彈模數之影響 75 5-3-4 回彈模數與割線模數E50之關聯 79 5-3-5 回彈應變之預測式建議 82 第六章 案例分析 91 第七章 結論與建議 96 7-1 結論 96 7-2 建議 97 參考文獻 98

    參考文獻
    Achmus, M., Kuo, Y. S., and Abdel-Rahman, K. (2009). “Behavior of monopile foundations under cyclic lateral load.” Computers and Geotechnics, 36(5), (pp. 725-735).
    ASTM D854-14 (2015). ‘‘Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.’’ American Society for Testing and Materials, USA.
    ASTM D4253-14 (2015). ‘‘Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table.’’ American Society for Testing and Materials, USA.
    ASTM D4254-14 (2015). ‘‘Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.’’ American Society for Testing and Materials, USA.
    ASTM D7181-11 (2014). ‘‘Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils.’’ American Society for Testing and Materials, USA.
    Arnold, G., & Werkemeister, S. (2010). “Pavement thickness design charts derived from a rut depth finite element model ”(No. 427).
    AASHTO (1986) “Guide for Design of Pavement Structures”, Volume 1.
    Arshad M. (2018) ‘‘Correlation between resilient modulus (MR) and constrained modulus(MC) values of granular materials’’ Journal of Construction and Building Materials 159, 440-450.
    BSH (2012). Guidance for use of the BSH standard “Design of Offshore Wind Turbines,” Bundesamt für Seeschifffahrt und Hydrographie. Federal Maritime and Hydrographic Agency of Germany (BSH); in German.
    BSH (2008). Standard Soil Investigations for Offshore Wind Farms. Federal Maritime and Hydrographic Agency of Germany (BSH); in German.
    Barksdale, R. D. “Laboratory Evaluation of Rutting in Base Course Materials. ” Proceedings of the 3rd International Conference on the Structural Design of Asphalt Pavements, London, September 11-15, 1972, Vol. 1, pp. 161-174.
    Chow, L., Mishra, D., & Tutumluer, E. (2014). “Framework for development of an improved unbound aggregate base rutting model for mechanistic-empirical pavement design. ” Transportation Research Record: Journal of the Transportation Research Board, (2401), 11-21.
    Chen, W. B., Yin, J. H., Feng, W. Q., Borana, L., & Chen, R. P. (2018). “Accumulated Permanent Axial Strain of a Subgrade Fill under Cyclic High-Speed Railway Loading.” International Journal of Geomechanics, 18(5).
    DNV GL (2016). “DNVGL-ST-0126 Support structures for wind turbines,” Bærum, Norway.
    Duncan, J. M., & Chang, C. Y. (1970). “Nonlinear analysis of stress and strain in soils. ” Journal of Soil Mechanics & Foundations Div.
    Huurman, M. (1996). “Rut development in concrete block pavements due to permanent strain in the substructure.” In First international conference on concrete block paving, (pp. 293-303).
    Heukelom, W., & Klomp, A. (1962). “Dynamic testing as a means of controlling pavements during and after construction. ” In International Conference on the Structural Design of Asphalt PavementsUniversity of Michigan, Ann Arbor (Vol. 203, No. 1).
    Huang, Y. H. (2004). “Pavement analysis and design. ”
    Hicks, R. G.(1970) “Factors Influencing the Resilient Properties of Granular Materials. ” Ph.D. dissertation. University of California, Berkeley, California.
    Ishibashi, I. (1992). Discussion of “Effect of Soil Plasticity on Cyclic Response” by Mladen Vucetic and Ricardo Dobry (January, 1991, 117, (1),” Journal of Geotechnical Engineering , ASCE, Vol. 118, No. 5, (pp. 830-832).
    Johannes Albiker (2016). “Untersuchungen zum Tragverhalten zyklisch lateral
    belasteter Pfähle in nichtbindigen Böden” Ph.D. thesis, Lebniz Universität Hannover,Hannover, Heft 77.
    Kuo, Y.-S. (2008). “On the behavior of large-diameter piles under cyclic lateral load.” Ph.D. thesis, Lebniz Universität Hannover,Hannover, Heft 65.
    Kuo, Y-S., Achmus, M. and Abdel-Rahman, K. (2010). “On the suitability of requirements regarding the minimum embedded length of monopoles.” ASCE Geotechnical Special Publications, No. 205, pp. 315-324 (EI).
    Kondner, R. L. (1963). “A hyperbolic stressstrain formulation for sands. ” In Proc. 2nd Pan-American Conf. on SMFE (Vol. 1, pp. 289-324).
    Korkiala-Tanttu, L. (2009). “Calculation method for permanent deformation of unbound pavement materials. ” VTT.
    Kolisoja, P. (1997). “Resilient deformation characteristics of granular materials ”(pp. 188-201). Finland, Publications: Tampere University of Technology.
    Lee et al. (1997). “Resilient modulus of cohesive soils. ” J. Geotech. Geoenviron. Eng. 123(2) 131–136.
    Lackenby, J., Indraratna, B., McDowell, G., & Christie, D. (2007). “Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading.”
    Lekarp, F., Isacsson, U., & Dawson, A. (2000). State of the art. I: “Resilient response of unbound aggregates. ” Journal of transportation engineering, 126(1), 66-75.
    M.R. Thompson, Q.L. Robnett (1979). “Resilient properties of subgrade soils.”, Transp.Eng. J. ASCE 105 (TE1) 71–89.
    Morgan, J. R. (1966). “The response of granular materials to repeated loading. ” Australian Road Research Board Proc.
    Monismith, C. L., Seed, H. B., Mitry, F. G., & Chan, C. (1967). “Predictions of pavement deflections from laboratory tests. ” In Second International Conference on the Structural Design of Asphalt PavementsUniversity of Michigan, Ann Arbor.
    Moore, W. M., Britton, S. C., and Schrivner, F. H. (1970). ‘‘A laboratory study of the relation of stress to strain for a crushed limestone base material.’’ Res. Rep. 99-5F, Study 2-8-65-99, Texas Transp. Inst., Texas A&M University, College Station, Tex.
    Md. Jahid Iftekhar Alam and C.T. Gnanendran, S.R. Lo (2017) ‘‘Modellig the settlement behaviour of a strip footing on sloping sandy fill under cylic loading conditions.’’ Computers and Geotechnics 86 , 181–192.
    Pezo, R. F. (1993, January). “A general method of reporting resilient modulus tests of soils.”–A pavement engineer’s point of view. In 72nd Annual Meeting of the TRB.
    Sweere,(1990) G.T.H. “Unbound Granular Bases for Roads. Ph.D. dissertation. ” University of Delft, Delft, Netherlands.
    Shook, J. F. (1982). “Thickness design of asphalt pavements-the Asphalt Institute method. ” In Proceedings, 5th International Conference on Structural Design of Asphalt Pavements, Delft University of Technology,(Vol. 1, pp. 17-44).
    Seed, H. B., Mitry, F. G., Monismith, C. L., & Chan, C. K. (1967). “Prediction of flexible pavement deflections from laboratory repeated-load tests.” NCHRP Report, (35).
    Sweere, G. T. (1990). “Unbound granular bases for roads. ”
    Seed, B., and Lee, K. L. (1966). “Liquefaction of saturated sands during cyclic loading. ” Journal of Soil Mechanics & Foundations Div, 92(ASCE# 4972 Proceeding).
    Smith, W. S., and Nair, K. (1973). “Development of procedures for characterization of untreated granular base course and asphalt-treated base course materials ”(No. FHWA-RD-74-61 Final Rpt.).
    Yifei Sun, and Yang Xiao (2015). “Fractional Order Modelling of The Cumulative Deformation of Granular Soils Under Cyclic Loading.” Acta Mechanica Solida Sinica, Vol. 28, No. 6.
    T. Buu (1980). “Correlation of Resistance R-value and Resilient Modulus of Idaho Subgrade Soil.”, Idaho Department of Transportation, Division of Highways.
    Uzan, J. (1985). “Characterization of granular material. ” Transportation research record, 1022(1), 52-59.
    Wolff, H., and A. T. Visser,(1994). “Incorporating Elasto-Plasticity in Granular Pavement Design. ” Proceedings of the Institute of Civil Engineers, Transport 105. pp. 259-272.
    Wichtmann, T., Niemunis, A., & Triantafyllidis, T. (2005). “Strain accumulation in sand due to cyclic loading: drained triaxial tests. ” Soil Dynamics and Earthquake Engineering, 25(12), 967-979.
    Wichtmann, T., Niemunis, A., & Triantafyllidis, T. (2009). “Validation and calibration of a high-cycle accumulation model based on cyclic triaxial tests on eight sands. ” Soils and Foundations, 49(5), 711-728.
    Youd, T. L. (1970). “Densification and shear of sand during vibration. ” Journal of the Soil Mechanics and Foundations Division, 96(3), 863-880.
    郭玉樹、黃迪瑩、曾姿郡、林啓聖 (2014) 「離岸風機套管式基礎地工設計考量」,海洋及水下科技季刊,103 年12 月號。
    台灣世曦工程顧問股份有限公司 (2017),「離岸風機基礎穩定性風險評估 (1/2)」,台灣世曦工程顧問股份有限公司。
    李宜芝(2015),「快速凝結水泥改良砂土靜態力學行為研究」,碩士論文,國立成功大學水利及海洋工程研究所,台南。
    許博凱(2015),「基礎勁度對離岸風機支撐結構行為影響研究」,碩士論文,國立成功大學水利及海洋工程研究所,台南。
    張芥綺(2017),「快速凝結材改良無凝聚性土壤力學行為研究」,碩士論文,國立成功大學水利及海洋工程研究所,台南。
    楊樹榮(2002),「路基土壤反覆載重下之回彈與塑性行為及模式建構」,碩士論文,國立中央大學土木工程研究所,桃園。
    郭玉樹、盧泰維、林啓聖 (2017) 「台灣西部海域重模土壤勁度衰減參數初探」,台灣風能學術研討會,彰化。

    無法下載圖示 校內:2028-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE