| 研究生: |
陳柏安 Chen, Po-An |
|---|---|
| 論文名稱: |
二維材料於先進電阻式隨機存取記憶體與平面互連之應用 Application of 2D materials to Advanced Resistive Random-Access Memory and Planar Interconnect |
| 指導教授: |
江孟學
Chiang, Meng-Hsueh |
| 共同指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 二維材料 、電阻式隨機存取記憶體(RRAM) 、互連(interconnect) 、第一原理計算(ab initio calculation) 、六方氮化硼(hBN) 、二硫化鉬 (MoS2) 、石墨烯緞帶(graphene nanoribbon) |
| 外文關鍵詞: | Two-dimensional materials (2D materials), resistive random-access memory (RRAM), interconnect, ab initio, hexagonal boron nitride (hBN), molybdenum disulfide (MoS2), graphene nanoribbon |
| ORCID: | https://orcid.org/0000-0003-1784-7454 |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對二維材料(2D materials)於電阻式隨機存取記憶體(resistive random-access memory, RRAM)和平面互連(planar interconnect)中的應用進行了全面性的探索研究。具有凡得瓦(Van der Waals)原子級層狀結構的二維材料作為不同的工作機制被應用於RRAM堆疊層中,包含:電阻切換(resistive switching)、穿隧(tunneling)和阻擋(blocking)層,並透過實驗、量測和第一原理(ab initio)模擬計算,實現和研究不同的RRAM功能。接著,通過第一原理分析,進行鋸齒形石墨烯奈米緞帶(zigzag graphene nanoribbon, ZGNR)應用於超小尺度平面互連的可行性評估。
針對在RRAM堆疊層中使用二維材料作為電阻切換層之研究,分別對具絕緣特性的多層六方氮化硼(hexagonal boron nitride, hBN)和具半導體特性的單層二硫化鉬(molybdenum disulfide, MoS2)進行探討。通過嵌入刻意氧化的氧化鈦層,為多層hBN RRAM實現了有效的雙堆疊層調製,使其呈現了增強的電阻切換特性,包含:均勻的 I–V 分佈、可控的電阻狀態、改善的記憶體窗口耐久性和較低的重置電壓(Vreset);根據實驗和理論分析,有效的雙堆疊層調製為透過硼缺陷和氧缺陷之間巨大的形成能差異所達成。接著,使用密度泛函理論(density functional theory, DFT)和非平衡格林函數(non-quilibrium Green’s function, NEGF),針對僅具原子級厚度的單層MoS2 RRAM之電阻切換機制進行研究,通過對缺陷、界面和傳輸的全面性分析,提出了黃金陽離子於MoS2缺陷處還原形成導電絲的類導電橋機制(conductive-bridge)。
而為了進一步發揮二維材料的凡得瓦原子級層狀結構的優勢,特別設計了二維材料不直接參與電阻切換的RRAM堆疊層。極薄的無選擇器電阻式記憶體(selectorless RRAM)通過使用hBN作為RRAM堆疊層內的穿隧層取得實現,分別於1/2和1/3讀取偏壓方案(bias scheme)下展現了12和23的良好非線性值;並且受益於hBN原子級厚度的優勢,selectorless RRAM的雙堆疊層總厚度降低至6.3 nm。此外,透過使用單層MoS2作為電阻切換層和氧交換層之間的阻擋層,提出了罕見的揮發性電阻式記憶體(volatile RRAM),並對所提出的volatile RRAM進行簡單的脈衝量測,成功模仿了短期可塑性(short-term plasticity, STP)和長期增強性(long-term potentiation, LTP)的大腦學習行為。
最後,對於平面互連研究,使用DFT和NEGF對特殊的非對稱ZGNR作為平面互連實現的可行性進行評估。非對稱ZGNR的類導體線性 I–V 特性,顯示出其在未來的超小尺寸技術節點中,應用於平面互連的巨大潛力。於分析的尺寸範圍內,非對稱ZGNR呈現了與結構長寬無相依性的I–V 特性,此現象可歸因於邊緣主導的非散射傳輸和彈道輸運(ballistic transport)。而針對實現全石墨烯平面互連網路,本研究提出了特殊的閃電形ZGNR結構。
This dissertation presents a comprehensive exploration of the application of two-dimensional (2D) materials to resistive random-access memory (RRAM) and planar interconnect. 2D materials with the unique Van der Waals atomic structure are applied to RRAM stacks to realize different working mechanisms, including switching, tunneling, and blocking layers. Different RRAM functions are realized and studied through experiments and ab initio studies. Then, the feasibility of zigzag graphene nanoribbons (ZGNRs) for interconnect applications at the ultrasmall scale is evaluated through ab initio analysis.
For 2D materials serving as the switching layer within RRAM stacks, the insulating multilayer hexagonal boron nitride (hBN) and semiconducting monolayer molybdenum disulfide (MoS2) are investigated. Effective bilayer modulation is achieved for multilayer-hBN RRAM through the insertion of an intentionally oxidized titanium oxide layer. The modulated multilayer-hBN RRAM exhibits enhanced switching characteristics with considerably uniform I–V distribution, controllable resistance states, good endurance for the memory window, and low Vreset. Experimental and theoretical analyses reveal that the effective modulation is supported by the considerable formation energy difference between boron and oxygen vacancies. Next, the switching mechanism of monolayer MoS2 RRAM with an atomic-level thickness of approximately 0.67 nm is studied using density functional theory (DFT) and nonequilibrium Green’s function (NEGF). Through the comprehensive analyses of the defects, interface, and transmission, a conductive bridge-like mechanism of Au cation reduction at the defect site of MoS2 is proposed.
To further utilize the Van der Waals atomic structure of 2D materials within an RRAM stack, RRAM stacks in which the 2D materials do not directly participate in the switching are designed. A thin selectorless RRAM with an hBN layer serving as the tunneling layer within the RRAM stack is presented with a good nonlinearity of 12 under the 1/2-bias scheme and 23 under 1/3-bias scheme. The advantage of the atomic-level thickness of hBN facilitates reduction of the total thickness to 6.3 nm. Further, a rare volatile RRAM is proposed with a monolayer MoS2 serving as a blocking layer between the switching and oxygen-exchange layers. Moreover, the successful imitation of brain-learning behaviors of both short-term plasticity (STP) and long-term potentiation (LTP) through simple pulse measurements on the proposed volatile RRAM is described.
Finally, for the planar interconnect research, the feasibility of special asymmetric ZGNRs being implemented as a planar interconnect is evaluated using DFT and NEGF. The conductor-like linear I–V characteristics of the asymmetric ZGNRs demonstrate high potential to be applied to planar interconnects in future ultrasmall technology nodes. Within the analyzed geometrical sizes, the asymmetric ZGNRs exhibit width- and length-insensitive I–V characteristics, which are attributable to the edge-dominant nonscattering transport and ballistic transport, respectively. Further, a special lightning-shaped structure is proposed for completing the all-ZGNR planar interconnect network.
[1] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent progress in resistive random access memories: Materials, switching mechanisms, and performance,” Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2017.
[2] An Chen, “A review of emerging non-volatile memory (NVM) technologies and applications,” Solid-State Electronics, vol. 125, pp. 25-38, 2016.
[3] Y. Chen, "ReRAM: History, status, and future,” IEEE Transactions on Electron Devices, vol. 67, no. 4, pp. 1420-1433, 2020.
[4] Daniele Ielmini, “Resistive switching memories based on metal oxides: mechanisms, reliability and scaling,” Semiconductor Science and Technology, vol. 31, no. 6, pp. 063002-1-063002-25, 2016.
[5] L. Zhu, J. Zhou, Z. Guo, Z. Sun, “An overview of materials issues in resistive random access memory,” Journal of Materiomics, vol. 1, no. 4, pp. 285-295, 2015.
[6] H.-S. Philip Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, Frederick T. Chen, and M.-J. Tsai, “Metal–oxide RRAM,” Proceedings of the IEEE, vol. 100, no.6, pp. 1951-1970, 2012.
[7] Y. -S. Song, C. -Y. Chu, J. Jeon, U. -H. Kwon, K. -H. Lee and S. Kim, “Accurate BEOL statistical modeling methodology with circuit-level multi-layer process variations,” 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), IEEE, pp. 265-268, 2017.
[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696 pp. 666-669, 2004.
[9] Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, “Van der Waals heterostructures and devices,” Nature Reviews Materials, vol. 1, no .9, pp. 1-17, 2016.
[10] F. Zahoor, T. Z. A. Zulkifli, and F. A. Khanday, “Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications,” Nanoscale research letters, vol. 15, no. 1, pp. 1-26, 2020.
[11] S. H. Jo, K.-H. Kim, and W. Lu, “High-density crossbar arrays based on a Si memristive system,” Nano letters, vol. 9, no. 2, pp. 870-874, 2009.
[12] I. G. Baek, C. J. Park, H. Ju, D. J. Seong, H. S. Ahn, J. H. Kim, M. K. Yang, S. H. Song, E. M. Kim, S. O. Park, C. H. Park, C. W. Song, G. T. Jeong, S. Choi, H. K. Kang, and C. Chung, “Realization of vertical resistive memory (VRRAM) using cost effective 3D process,” 2011 International Electron Devices Meeting (IEDM), pp. 31.8.1-31.8.4, 2011.
[13] F. M. Puglisi, L. Larcher, C. Pan, N. Xiao, Y. Shi, F. Hui, and M. Lanza, “2D h-BN based RRAM devices,” 2016 IEEE International Electron Devices Meeting (IEDM), pp. 34.8.1-34.8.4, 2016.
[14] C. Pan, Y. Ji, N. Xiao, F. Hui, K. Tang, Y. Guo, X. Xie, F. M. Puglisi, L. L, E. Miranda, L. Jiang, Y. Shi, I. Valov, P. C. McIntyre, R. Waser, and M. Lanza, “Coexistence of grain‐boundaries‐assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride,” Advanced Functional Materials, vol. 27, no. 10, pp. 1604811-1-1604811-10, 2017.
[15] X. Wu, R. Ge, P.-A. Chen, H. Chou, Z. Zhang, Y. Zhang, S. Banerjee, M.-H. Chiang, J. C. Lee, and D. Akinwande, “Thinnest nonvolatile memory based on monolayer h‐BN,” Advanced Materials, vol. 31, no. 15, pp. 1806790-1-1806790-7, 2019.
[16] R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, Y. Zhang, J. C. Lee, and D. Akinwande, “Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides,” Nano Letters, vol. 18, no. 1, pp. 434-441, 2018.
[17] S. Rehman, M. F. Khan, S. Aftab, H. Kim, J. Eom, and D. Kim, ‘Thickness-dependent resistive switching in black phosphorus CBRAM,” Journal of Materials Chemistry C, vol. 7, no. 3, pp. 725-732, 2019.
[18] C.-L. Lo, B. A. Helfrecht, Y. He, D. M. Guzman, N. Onofrio, S. Zhang, D. Weinstein, A. Strachan, and Z. Chen, “Opportunities and challenges of 2D materials in back-end-of-line interconnect scaling,” Journal of Applied Physics, vol. 128, no.8, pp. 080903-1-080903-16, 2020.
[19] G. Bonilla, N. Lanzillo, C.-K. Hu, C. J. Penny, and A. Kumar, “Interconnect scaling challenges, and opportunities to enable system-level performance beyond 30 nm pitch,” 2020 IEEE International Electron Devices Meeting (IEDM), pp. 20.4.1-20.4.4, 2020, 2020.
[20] A. Hazra, and S. Basu, “Graphene nanoribbon as potential on-chip interconnect material—A review,” Journal of Carbon Research, vol. 4, no. 3:49, pp. 1-27, 2018.
[21] K. Wakabayashi and S. Dutta, “Nanoscale and edge effect on electronic properties of graphene,” Solid state communications, vol. 152, no.15, pp. 1420-1430, 2012.
[22] J. Woo, K. Moon, J. Song, S. Lee, M. Kwak, J. Park, and H. Hwang, “Improved synaptic behavior under identical pulses using AlOx/HfO2 bilayer RRAM array for neuromorphic systems,” IEEE Electron Device Letters, vol. 37, no. 8, pp. 994-997, 2016.
[23] R. Jiang, Z. Han, and X. Du, “Reliability/uniformity improvement induced by an ultrathin TiO2 insertion in Ti/HfO2/Pt resistive switching memories." Microelectronics Reliability, vol. 63, pp. 37-41, 2016.
[24] X. Ding, Y. Feng, P. Huang, L. Liu, and J. Kang, “Low-power resistive switching characteristic in HfO2/TiOx Bi-layer resistive random-access memory,” Nanoscale Research Letters, vol. 14.1, no. 157, pp. 1-7, 2019.
[25] K. Park and J.-S. Lee, “Reliable resistive switching memory based on oxygen-vacancy-controlled bilayer structures,” RSC advances, vol. 6, no. 26, pp. 21736-21741, 2016.
[26] M. Akbari, M.-K. Kim, D. Kim, and J.-S. Lee, “Reproducible and reliable resistive switching behaviors of AlOX/HfOX bilayer structures with Al electrode by atomic layer deposition." RSC Advances, vol. 7, no. 27, pp. 16704-16708, 2017.
[27] Graphene Supermarket, Accessed: Apr. 2022. [Online]. Available: https://graphene-supermarket.com/
[28] K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and Jing Kong, “Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices,” ACS Nano, vol. 6, no. 10, pp. 8583-8590, 2012.
[29] T. Park, H. Kim, M. Leem, W. Ahn, S. Choi, J. Kim, J. Uha, K. Kwon, S.-J. Jeong, S. Park, Y. Kim, and H. Kim, “Atomic layer deposition of Al2O3 on MoS2, WS2, WSe2, and h-BN: surface coverage and adsorption energy,” RSC Advances, vol. 7, no. 2, pp. 884-889, 2017.
[30] R. V. Gorbachev, I. Riaz, R. R. Nair, R. Jalil, L. Britnell, B. D. Belle, E. W. Hill, K. S. Novoselov, K. Watanabe, T. Taniguchi, A. K. Geim, and P. Blake, “Hunting for monolayer boron nitride: optical and Raman signatures,” Small, vol. 7, no. 4, pp. 465-468, 2011.
[31] QuantumWise Atomistix ToolKit (ATK) manual, ver. 2017.2, Accessed: Apr. 2022. [Online]. Available: https://docs.quantumatk.com/manual/ manual.html
[32] J. C. Koepke, J. D. Wood, Y. Chen, S. W. Schmucker, X. Liu, N. N. Chang, L. Nienhaus, J. W. Do, E. A. Carrion, J. Hewaparakrama, A. Rangarajan, I. Datye, R. Mehta, R. T. Haasch, M. Gruebele, G. S. Girolami, E. Pop, and J. W. Lyding, “Role of pressure in the growth of hexagonal boron nitride thin films from ammonia-borane,” Chemistry of Materials, vol. 28, no. 12, pp. 4169-4179, 2016.
[33] S. K. Jang, J. Youn, Y. J. Song, and S. Lee, “Synthesis and characterization of hexagonal boron nitride as a gate dielectric,” Scientific Reports, vol. 6, no. 1, pp. 1-9, 2016.
[34] W.-H. Lin, V. W. Brar, D. Jariwala, M. C. Sherrott, W.-S. Tseng, C.-I Wu, N.-C. Yeh, and H. A. Atwater, “Atomic-scale structural and chemical characterization of hexagonal boron nitride layers synthesized at the wafer-scale with monolayer thickness control,” Chemistry of Materials, vol. 29, no. 11, pp. 4700-4707, 2017.
[35] H. L. Chee, T. N. Kumar, and H. A. Almurib, “Multifilamentary conduction modelling of bipolar Ta2O5/TaOx Bi-layered RRAM,” 2018 IEEE 7th Non-Volatile Memory Systems and Applications Symposium (NVMSA), pp. 113-114, 2018.
[36] S.Asapu and T. Maiti, “Multifilamentary conduction modeling in transition metal oxide-based RRAM,” IEEE Transactions on Electron Devices, vol. 64, no. 8, pp. 3145-3150, 2017.
[37] A. Rose, “Space-charge-limited currents in solids,” Physical Review, vol. 97, no. 6, pp. 1538-1544, 1955.
[38] E. W. Lim and R. Ismail, “Conduction mechanism of valence change resistive switching memory: a survey,” Electronics, vol. 4, no. 3, pp. 586-613, 2015.
[39] A. Zobelli, C. P. Ewels, A. Gloter, and G. Seifert, “Vacancy migration in hexagonal boron nitride,” Physical Review B, vol. 75, no. 9, pp. 094104-1-094104-7, 2007.
[40] P. Bousoulas, I. Giannopoulos, P. Asenov, I. Karageorgiou and D. Tsoukalas, “Experiments and simulation of multilevel resistive switching in forming free Ti/TiO 2−x RRAM devices,” 2017 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), IEEE, pp. 172-175, 2017.
[41] D. Wang, D. Han, X.-B. Li, S.-Y. Xie, N.-K. Chen, W. Q. Tian, D. West, H.-B. Sun, and S. B. Zhang, “Determination of formation and ionization energies of charged defects in two-dimensional materials,” Physical review letters, vol. 114, no. 19, pp. 196801-1-19801-5, 2015.
[42] D. Wang, D. Han, X.-B. Li, N.-K. Chen, D. West, V. Meunier, S. Zhang, and H.-B. Sun, “Charged defects in two-dimensional semiconductors of arbitrary thickness and geometry: Formulation and application to few-layer black phosphorus,” Physical Review B, vol. 96, no. 15, pp. 155424-1155424-7, 2017.
[43] C. Freysoldt, J. Neugebauer, and C. G. V. d. Walle, “Fully ab initio finite-size corrections for charged-defect supercell calculations,” Physical review letters, vol. 102, no. 1, pp. 016402-1016402-4, 2009.
[44] W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P. M. Ajayan, B. I. Yakobson, and J.-C. Idrobo, “Intrinsic structural defects in monolayer molybdenum disulfide,” Nano Letters, vol. 13, no. 6, pp. 2615-2622, 2013.
[45] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, “Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors,” Physical Review X, vol. 4, no. 3, pp. 031005-1-031005-14, 2014.
[46] S. Grimme, “Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction,” Journal of Computational Chemistry, vol. 27, no.15, pp. 1787-1799, 2006.
[47] P. Vancsó, G. Z. Magda, J. Pető, J.-Y. Noh, Y.-S. Kim, C. Hwang, L. P. Biró and L. Tapasztó, “The intrinsic defect structure of exfoliated MoS2 single layers revealed by Scanning Tunneling Microscopy,” Scientific Reports, vol. 6, no. 1, pp. 1-7, 2016.
[48] R. Ge, X. Wu, M. Kim, P.-A. Chen, J. Shi, J. Choi, X. Li, Y. Zhang, M.-H. Chiang, J. C Lee, and D. Akinwande, “Atomristors: memory effect in atomically-thin sheets and record rf switches,” 2018 IEEE International Electron Devices Meeting (IEDM), pp. 22.6-1-22.6-4, 2018.
[49] H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, “From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation,” Physical Review B, vol. 88, no. 3, pp. 035301-1-035301-8, 2013.
[50] S. M. Hus, R. Ge, P.-A. Chen, L. Liang, G. E Donnelly, W. Ko, F. Huang, M.-H. Chiang, A.-P. Li, and D. Akinwande, “Observation of single-defect memristor in an MoS2 atomic sheet,” Nature Nanotechnology, vol. 16, no. 1, pp. 58-62, 2021.
[51] A. Chen, “Comprehensive methodology for the design and assessment of crossbar memory array with nonlinear and asymmetric selector devices,” 2013 IEEE International Electron Devices Meeting (IEDM), pp. 30.3.1-30.3.4, 2013.
[52] S. Lee, D. Lee, J. Woo, E. Cha, J. Song, J. Park, and H. Hwang, “Selector-less ReRAM with an excellent non-linearity and reliability by the band-gap engineered multi-layer titanium oxide and triangular shaped AC pulse,” 2013 IEEE International Electron Devices Meeting (IEDM), pp. 10.6.1-10.6.4, 2013.
[53] S. Lee, J. Woo, D. Lee, E. Cha, and H. Hwang, “Internal resistor of multi-functional tunnel barrier for selectivity and switching uniformity in resistive random access memory,” Nanoscale Research Letters, vol. 9, no. 1, pp. 1-7, 2014.
[54] S. Lee, D. Lee, J. Woo, E. Cha, J. Park, K. Moon, J. Song, and H. Hwang, “The band-gap energy dependence of metal oxides on non-linear characteristics in the HfO2-based resistive random access memory,” Microelectronic Engineering, vol. 147, pp. 321-324, 2015.
[55] S. Chakrabarti, S. Samanta, S. Maikap, S. Z. Rahaman, and H.-M. Cheng, “Temperature-dependent non-linear resistive switching characteristics and mechanism using a new W/WO3/WOx/W structure,” Nanoscale Research Letters, vol. 11, no. 1, pp. 1-8, 2016.
[56] S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, “Resistive switching characteristics of Si3N4-based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications,” Applied Physics Letters, vol. 106, no. 21, pp. 212106-1-212106-4, 2015.
[57] Y.-C. Chen, C.-Y. Lin, H.-C. Huang, S. Kim, B. Fowler, Y.-F. Chang, X. Wu, G. Xu, T.-C. Chang, and J. C. Lee, “Internal filament modulation in low-dielectric gap design for built-in selector-less resistive switching memory application,” Journal of Physics D: Applied Physics, vol. 51, no. 5, pp. 055108-1-055108-8, 2018.
[58] Y.-C. Chen, S.-T. Hu, C.-Y. Lin, B. Fowler, H.-C. Huang, C.-C. Lin, S. Kim, Y.-F. Chang, and J. C. Lee, “Graphite-based selectorless RRAM: improvable intrinsic nonlinearity for array applications,” Nanoscale, vol. 10, no. 33, pp. 15608-15614, 2018.
[59] Y. Ji, C. Pan, M. Zhang, S. Long, X. Lian, F. Miao, F. Hui, Y. Shi, L. Larcher, E. Wu, and Mario Lanza, “Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown,” Applied Physics Letters, vol. 108, no. 1, pp. 012905-1-012905-5, 2016.
[60] G.-H. Lee, Y.-J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, and J. Hone, “Electron tunneling through atomically flat and ultrathin hexagonal boron nitride,” Applied Physics Letters, vol. 99, no. 24, pp. 243114-1-243114-3, 2011.
[61] L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Letters, vol. 12, no. 3, pp. 1707-1710, 2012.
[62] REVALPHA NO.3195MS, Nitto. Accessed: Apr. 2022. [Online]. Available: https://www.nitto.com/tw/en/products/e_parts/electronic001/
[63] R. G. Southwick, A. Sup, A. Jain and W. B. Knowlton, “An interactive simulation tool for complex multilayer dielectric devices,” IEEE Transactions on Device and Materials Reliability, vol. 11, no. 2, pp. 236-243, 2011.
[64] A. Laturia, M. L. V. d. Put, and W. G. Vandenberghe, “Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk,” npj 2D Materials and Applications, 2.1 pp. 1-7, 2018.
[65] T. Bertaud, M. Sowinska, D. Walczyk, S. Thiess, A. Gloskovskii, C. Walczyk, and Thomas Schroeder, “In-operando and non-destructive analysis of the resistive switching in the Ti/HfO2/TiN-based system by hard x-ray photoelectron spectroscopy,” Applied Physics Letters, vol. 101, no. 14, pp.143501-1-143501-5, 2012.
[66] S. Park, J. Noh, M.-l. Choo, A. M. Sheri, M. Chang, Y.-B. Kim, C. J. Kim, M. Jeon, B.-G. Lee, B. H. Lee, and H. Hwang, “Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device,” Nanotechnology, vol. 24, no. 38, pp. 384009-1-384009-6, 2013.
[67] S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H.-S. P. Wong, “An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation,” IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2729-2737, 2011.
[68] A. Padovani, J. Woo, H. Hwang, and L. Larcher, “Understanding and optimization of pulsed SET operation in HfOx-based RRAM devices for neuromorphic computing applications,” IEEE Electron Device Letters, vol. 39, no. 5, pp. 672-675, 2018.
[69] R. C. Atkinson and R. M. Shiffrin, “Human memory: A proposed system and its control processes,” Psychology of learning and motivation, vol. 2, pp. 89-195, 1968.
[70] R. S. Zucker and W. G. Regehr, “Short-term synaptic plasticity,” Annual Review of Physiology, vol. 64, no. 1, pp. 355-405, 2002.
[71] S. J. Martin, P. D. Grimwood, and R. G. M. Morris, “Synaptic plasticity and memory: an evaluation of the hypothesis,” Annual Review of Neuroscience, vol. 23, no. 1, pp. 649-711, 2000.
[72] Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H. L. Xin, R. S. Williams, Q. Xia, and J. J. Yang, “Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing,” Nature Materials, vol. 16, no. 1, pp. 101-108, 2017.
[73] X. Zhang, S. Liu, X. Zhao, F. Wu, Q. Wu, W. Wang, R. Cao, Y. Fang, H. Lv, S. Long, Q. Liu, and M. Liu, “Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor,” IEEE Electron Device Letters, vol. 38, no. 9, pp. 1208-1211, 2017.
[74] T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono, “Short-term plasticity and long-term potentiation mimicked in single inorganic synapses,” Nature Materials, vol. 10, no. 8, pp. 591-595, 2011.
[75] A. Sengupta and K. Roy, “Short-term plasticity and long-term potentiation in magnetic tunnel junctions: Towards volatile synapses,” Physical Review Applied, vol. 5, no. 2, pp. 024012-1-024012-6, 2016.
[76] R. Berdan, E. Vasilaki, A. Khiat, G. Indiveri, A. Serb, and T. Prodromakis, “Emulating short-term synaptic dynamics with memristive devices,” Scientific Reports, vol. 6, no. 1, pp. 1-9, 2016.
[77] S.-L. Li, H. Miyazaki, H. Song, H. Kuramochi, S. Nakaharai, and K. Tsukagoshi, “Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates,” ACS Nano, vol. 6, no. 8, pp. 7381-7388, 2012.
[78] S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B. I. Yakobson, J.-C. Idrobo, P. M. Ajayan, and J. Lou, “Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers,” Nature Materials, vol. 12, no. 8, pp. 754-759, 2013.
[79] L. Wu, H. Liu, J. Lin, and S. Wang, “Self-compliance and high performance Pt/HfOx/Ti RRAM achieved through annealing,” Nanomaterials, vol. 10(3), no. 457, pp. 1-8, 2020.
[80] G. Wang, C. Li, Y. Chen, Y. Xia, D. Wu and Q. Xu, “Reversible voltage dependent transition of abnormal and normal bipolar resistive switching,” Scientific Reports, vol. 6, no. 1, pp. 1-8, 2016.
[81] N. Srivastava, and K. Banerjee, “Interconnect challenges for nanoscale electronic circuits,” The Journal of The Minerals, Metals & Materials Society, vol. 56, no. 10, pp. 30-31, 2004.
[82] B. Li, T. D Sullivan, T. C Lee, and D. Badami, “Reliability challenges for copper interconnects,” Microelectronics Reliability, vol. 44, no. 3, pp. 365-380, 2004.
[83] International Technology Roadmap for Semiconductors 2.0 (ITRS 2.0), 2013, Accessed: Apr. 2022. [Online]. Available: http://www.itrs2.net/itrs-reports.html
[84] J. Kang, D. Sarkar, Y. Khatami, and K. Banerjeea, “Proposal for all-graphene monolithic logic circuits,” Applied Physics Letters, vol. 103, no. 8, pp. 083113-1-083113-5, 2013.
[85] Z. Li, H. Qian, J. Wu, B.-L. Gu, and W. Duan, “Role of symmetry in the transport properties of graphene nanoribbons under bias,” Physical Review Letters, vol. 100, no. 20, pp. 206802-1-206802-4, 2008.
[86] QuantumWise Atomistix ToolKit manual, ver. 2014, Accessed: Apr. 2022. [Online]. Available: https://www.synopsys.com/content/dam/synopsys/silicon/quantum-atk/pdf/qatk-2014-release-notes.pdf
[87] Y. An, K. Wang, Z. Yang, Z. Liu, G. Jia, Z. Jiao, T. Wang, and G. Xu, “Negative differential resistance and rectification effects in step-like graphene nanoribbons,” Organic Electronics, vol. 17, pp. 262-269, 2015.
[88] A. Sengupta, R. K. Ghosh, and S. Mahapatra, “Performance analysis of strained monolayer MoS2 MOSFET,” IEEE Transactions on Electron Devices, vol. 60, no. 9, pp. 2782-2787, 2013.
[89] S. Yamacli, “First principles study of the voltage-dependent conductance properties of n-type and p-type graphene–metal contacts,” Computational Materials Science, vol. 81, pp. 607-611, 2014.
[90] X. Deng, Z. Zhang, G. Tang, Z. Fan, H. Zhu, and C. Yang, “Edge contact dependent spin transport for n-type doping zigzag-graphene with asymmetric edge hydrogenation,” Scientific Reports, vol. 4, no. 1, pp. 1-7, 2017.
[91] K. Stokbro, M. Engelund, and A. Blom, “Atomic-scale model for the contact resistance of the nickel-graphene interface,” Physical Review B, vol. 85, no. 16, pp. 165442-1-165442-5, 2012.
[92] D. Gunlycke, H. M. Lawler, and C. T. White, “Room-temperature ballistic transport in narrow graphene strips,” Physical Review B, vol. 75, no. 8, pp. 085418-1-085418-5, 2007.
[93] F. Giannazzo, S. Sonde, R. L. Nigro, E. Rimini, and V. Raineri, "Mapping the density of scattering centers limiting the electron mean free path in graphene." Nano letters, vol. 11, no. 11, pp. 4612-4618, 2011.
[94] Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, “Patterning graphene with zigzag edges by self‐aligned anisotropic etching,” Advanced Materials, vol. 23, no. 27, pp. 3061-3065, 2011.
[95] A. Zandiatashbar, G.-H. Lee, S. J. An, S. Lee, N. Mathew, M. Terrones, T. Hayashi, C. R. Picu, J. Hone, and N. Koratkar, “Effect of defects on the intrinsic strength and stiffness of graphene,” Nature Communications, vol. 5, no. 1, pp. 1-9, 2014.