| 研究生: |
王俊傑 Wang, Jun-Jie |
|---|---|
| 論文名稱: |
ZnNb2O6介電陶瓷材料燒結與微波特性之研究 Study of Sintering and Microwave erties of ZnNb2O6 Dielectric Ceramic Material |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 帶通濾波器 、介電常數 |
| 外文關鍵詞: | bandpass filters, dielectric constant |
| 相關次數: | 點閱:56 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ZnNb2O6陶瓷在加入 B2O3 及CuO之後,有效地降低其ZnNb2O6 的燒結溫度至800℃以下。隨著B2O3含量的增加,使ZnNb2O6 + CuO 的燒結溫度逐漸降低。至於介電常數部分,εr 隨著 B2O3的增加而只有輕微的上升,Q×f 值可以作為燒結溫度及添加量的函數。於5wt%CuO及4wt% B2O3的比例下,燒結溫度由780~900℃持溫兩小時,Q×f 值變化由24000至46800GHz。在添加適當的燒結促進劑,頻率溫度係數為零值,將可以被獲得。添加B2O3 及CuO於ZnNb2O6陶瓷中,以900℃持溫兩小時,其介電特性為介電常數εr ~23.3、Q×f 值~46800GHz、頻率溫度係數τf = -6.7ppm/℃,並可將此特性使用於低溫共燒多層元件之應用。
xZnTa2O6 + (1-x)ZnNb2O6 陶瓷系統中,當x = 0.9時,可以得到一個τf ~0 pm/℃的微波介電材料0.9 ZnTa2O6-0.1 ZnNb2O6,以1300℃燒結兩小時,其介電特性介電常數εr =30.7、Q×f =52700GHz、頻率溫度係數τf = 0.8ppm/℃。
近幾年來,小型化及低成本的帶通濾波器在行動通訊系統中,已佔有重要地位,當以高介電常數的基板來實現小型化時,平面型濾波器結構是值得採用的一種,在本論文中,使用平行耦合線的U型微帶線以混合耦合的方式製作帶通濾波器。在濾波器基板製作方面,使用Al2O3及ZnNb2O6 + 5wt%CuO + 4wt%B2O3作為濾波器的基板。然而ZnNb2O6 + 5wt%CuO + 4wt%B2O3具有良好的溫度穩定性,高Q值及高εr 的特點,有效地縮小濾波器體積。其中心頻率為5GHz,BW=10﹪,去模擬與實作其最佳頻率響應,並作比較。
The B2O3 and CuO additives effectively lowered the intering temperature of ZnNb2O6 ceramics to below 800℃. The sintering temperature of CuO-doped ZnNb2O6 decreased with increasing B2O3 content. Dielectric constant εr was not significantly changed and increased slightly with increasing B2O3 content. The Q×f value was found to be function of both the sintering temperature and the amount of additives. With 5wt% CuO and 4wt% B2O3 additions, the Q×f value varied from 24000 to 46800 GHz as the sintering temperature increased from 780℃ to 900℃ for 2h. Zero temperature coefficient of the resonant frequency can be achieved by properly adjusting the concentration of additives. For low-firing multiplayer application, dielectric properties of εr ~23.3、Q×f ~46800GHz and τf ~ -6.7ppm/℃ can be obtained for doped ZnNb2O6 ceramics sintered at 900℃ for 2h.
The system of xZnTa2O6 + (1-x)ZnNb2O6 ceramics, with x = 0.9, a new micro-wave dielectric ceramic material 0.9 ZnTa2O6 -0.1 ZnNb2O6 is suggested and poss-esses the dielectric properties of a dielectric constant εr of 30.7 、 Q×f value of 52700 GHz and a τf value of 0.8 /℃ for 2h.
In the recent, miniature and low cost bandpass filters are very important in mobile communication systems. The planar filter structure is one of the possible choices for its compactness when realized with a high dielectric constant substract. In the paper, we used microstrip hairpin resonators to fabricate microwave bandpass filter based on mixed-coupled mechamism. In the aspect of the filter substract manufacture, we used Al2O3 and ZnNb2O6 + 5wt%CuO + 4wt%B2O3 to be the substracts of the filter. ZnNb2O6 + 5wt% CuO + 4wt% B2O3 have been used due to its good temperature stability , high Q value and high relative dielectric constant , respectively so that the filter can be miniaturized and realized good frequency response. The standard of the filter is 5 GHz and the bandwidth of the filter is 10% . And we compared the result of the simulation with the result of the measurement of the rmance.
[1]Edward G. Cristal, “Tapped-line coupled transmission line with applications to interdigital and combline filters, ”IEEE Trans. Microwave Theory Tech, vol 23 , pp.1007-1012, Dec.1975.
[2]J.A.Circuit, and S.J. Fiedziuszko, “Multi-layer planar filters based on aperture couple, dual mode microstrip or stripline resonators,” IEEE MTT-S Dig, pp.1203-1206, 1992.
[3]Seymour B Cohn, “Direct-coupled-resonator filter,” Proc. IRE, pp187-196, Feb. 1957.
[4]M. korber. “New microstrip bandpass filter topologies,
”Microwave Journal ,vol.40.pp.138-144, July 1997.
[5]M. Sagawa ,K. Takahashi, and M. Makimoto, “Miniaturized hairpin resonator filters and their application to receiver front-end MICs”, IEEE Trans. Microwave Theory Tech. Vol .37,pp. 1991-1997,Dec.1989.
[6]J.S. Hong, and M.J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filter,” IEEE Trans. Microwave Theory Tech, vol.44, pp.2099-2109, Dec. 1996.
[7]Kingry, Bowen, Uhlmann “Introduction to Ceramics”.
[8] 邱碧秀:電子陶瓷材料 徐式基金會出版,p.81,1997
[9] G.Burns:Solid State Physics p.461,1985
[10] .K.Wankino,H.Murata,H.Tamura: .Am.Cream.Soc.,Vol.69,pp34, (1986)
[11]W.E.Courtney “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators” IEEE. Trans. Microwave Theory Tegh. ,vol.MTT-18,p.476-485,1970
[12].David K. Cheng ”Field and Wave Electromagnetic”
pp407-412,1989
[13] .D. Kajfez ”Computed Modal Field Distribution for Isolated Dieletric Resonators”IEEE. Trans. MTT, Vol. MTT-32, pp.1609-1616,1984
[14] .D.Kajfez”Basic Principle Give Understanding of Dielectric Wave- guides and Resonators”Microwave System News,Vol.13,pp.152-161 ,(1983)
[15] D.Kajfez and P.Guillon”Dielectric Resonators”,1989
[16] W.J.Huppmann and G.Petzow”The Elementary Mechanisms of Liquid Sintering”,Sintering Processes,Plenum Press,pp.189-202, (1979)
[17].H.S.Cannon and F.V.Lenel in “Proceedings of the Plansee Seminar”, Edited by F.Benesovsky Metallwerk Plansee,Reutte,p.106,1953
[18]R. Raj and C. K. Chyung “Solution Reprecipitation Creep in Glass Ceramics ” Acta Metall, pp. 159-166,1980.
[19].V.N.Eremenko,Y.V.Naidich and I.A.Lenko,”Liquid (Consolation New York,1970,ch4)
[20].K.S.Hwang,Phd Thesis,Rensselaer Ploytechnic in Troy(1984).
[21].J.W.Cahn and R.B.Heady,J.Am.Ceram.pp.406,1970
[22].W.J.Huppmann and G.Petzow:Sintering process,Edited by G.C. Kuczynski(Plenum Press,New York,pp.189,1980)
[23].W.J.Huppmann and G.Petzow,Ber.Bunnsenges Phys.Chem.82, pp.308(1978)
[24].R.M.German:Liquid Phase Sintering,(Plenum Press, New York 1985,ch4)
[25].J.H.Jean and C.H.Lin:J.Mater.Sci.24,pp500,1989
[26]R.B. Heady and J. W. Cahn “An Analysis of the Capillary Forces in Liquid-Phase Sintering of Spherical Particles” Metall. Trans. Vol. 1,pp 185-189, 1970.
[27]R.B. Heady and J. W. Cahn”Analysis of Capillary Force in Liquid-Phase Sintering of Jagged Particles ” J. Am. Ceram. Soc. Vol.7 ,pp. 406-409,1970.
[28]L.A.Trinogga ,GUO Kaizhou ,I.C.Hunter, “Practical Microstrip Circuit Design” ,Ellis Horwood,1991
[29] K. C. Gupta, R. Garg, I. Bahl, and E Bhartis, “Microstrip Lines and Slotlines” , Second Edition, Artech House, Boston, 1996.
[30]E. O. Hammerstard, “Proceedings of the European Microwave Conference”, p. 268-272 , 1975
[31] David M.Pozar “Microwave Engineering”, Addison-Wesley,1998
[32]E. J. Denlinger "Losses of microstrip lines” IEEE Trans., MIT-28, June, p.513–522,1980
[33] R. A. Pucel, D. J. Masse, and C. E Hartwig "Losses in microstrip” IEEE Trans., MIT-16, June ,p.342-3501968,. Correction in IEEE Trans., MTT-16. Dec. 1968, p. 1064.
[34]張盛富、戴明鳳 , ”無線通信之射頻被動電路設計” , 全華出版社,1998.
[35]T. Edwards, “Foundations for Microstrip Circuit Design, Second Edition” ,Wiley, Chichester, U.K., 1991
[36]M. Kirschning, R. H. Jansen, and N. H. L. Koster, "Accurate model for open and effect of microstrip lines” Electronics Letters, vol.17, p.123-125,1981
[37]B. Easter, "The equivalent circuit of some microstrip discontinuities” IEEE Trans.,MTT-23, p.655-660,1975
[38] R.L.Geiger,P.E.Allen,N.R.Strader, “VLSI Design Techniques for Analog and Digital Circuits”
,McGraw-Hill,p.674-685,1990
[39] J.S.Hong and M.J.Lancaster “Couplings of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters” ,IEEE Transactions on Microwave
Theory and Techniques,vol.44,p.2099-2109,1996
[40] J.Helszajn “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits.” ,McGraw-Hill,1992
[41]J. S. Wong, “Microstrip tapped-line filter design ”
IEEE Trans. Microwave Theory Tech,vol.
MTT-27,pp.44-50,Jan.1979.
[42]International Telephone and Telegraph Corp.,Reference Data for Radio Engineers,6th Ed.Howard W.Sams Co.,Inc.
[43]M.Makimoto and M.Sagawa“Varactor tuned bandpass filters using microstrip-line ring resonator ” IEEE MTT-S Int. Microwave Symp ,Dig. May 1986, pp411-414.
[44]G. I. Zysman and A.K. Johnson. “Coupled transmisson line network in an inhomogeneous dielectric medium ” IEEE Trans Microwave Theory Tech , vol. MTT-17, pp. 753-759, Oct.1969.
[45] M. Makimoto and S. Yamashita “Bandpass filters using parallel coupled strip-line stepped impedance resonators ” IEEE Trans. Microwave Theory Tech , vol, MTT-28, pp, 1413-1417,Dec.1980.
[46]Y.Kobayashi and N.Katoh “Microwave Measurement of Dielectric Properties of Low-loss Materials by Dielectric Rod Resonator Method “ IEEE.Trans.MTT ,vol.MTT-33 ,p586-592 ,1985
[47]O.V. Karpova:Soviet Phys. Vol. 1 ,p.220,1959
[48]S.H.Cha:IEEE.Trans.MTT, Vol.MTT-33,p.519,1985
[49]P. Wheless and D.Kajfez"The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators” IEEE. MTT-S ,Symposium Dig. ,p.473-476,1985
[50]B.W.Hakki and P.D.Coleman “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range" IEEE. Trans.MTT ,vol.MTT- 8 ,p.402-410,1960
[51]D. W. Kim. K. H.Ko. and K. S. Hong,“Influence of Copper(∥) Oxide Additions to Zinc Niobate Microwave Ceramics on Sintering Temperature and Dielectric Properties”J. Am. Ceram. Spc.84(2001)1286-1290.
[52]B.D. Silverman, Phys.Rev.125(1962)1921.
[53] Hiroyuki Yabuki, Morikazu Sagawa, Mitsuo Makimoto“Voltage controlled push-push oscillators using miniaturized hairpin resonators ”IEEE.1991
[54]沈俊旭碩士論文“燒結促進劑對MCT微波介電特性之影響及應用”國立成功大學電機研究所
[55] 劉適嘉碩士論文“Ba[ZrxZn(1-x)/3Nb2(1-x)/3]O3介電陶瓷之微波特性及其應用”國立成功大學電機研究所