簡易檢索 / 詳目顯示

研究生: 王俊傑
Wang, Jun-Jie
論文名稱: ZnNb2O6介電陶瓷材料燒結與微波特性之研究
Study of Sintering and Microwave erties of ZnNb2O6 Dielectric Ceramic Material
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 113
中文關鍵詞: 帶通濾波器介電常數
外文關鍵詞: bandpass filters, dielectric constant
相關次數: 點閱:56下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • ZnNb2O6陶瓷在加入 B2O3 及CuO之後,有效地降低其ZnNb2O6 的燒結溫度至800℃以下。隨著B2O3含量的增加,使ZnNb2O6 + CuO 的燒結溫度逐漸降低。至於介電常數部分,εr 隨著 B2O3的增加而只有輕微的上升,Q×f 值可以作為燒結溫度及添加量的函數。於5wt%CuO及4wt% B2O3的比例下,燒結溫度由780~900℃持溫兩小時,Q×f 值變化由24000至46800GHz。在添加適當的燒結促進劑,頻率溫度係數為零值,將可以被獲得。添加B2O3 及CuO於ZnNb2O6陶瓷中,以900℃持溫兩小時,其介電特性為介電常數εr ~23.3、Q×f 值~46800GHz、頻率溫度係數τf = -6.7ppm/℃,並可將此特性使用於低溫共燒多層元件之應用。

    xZnTa2O6 + (1-x)ZnNb2O6 陶瓷系統中,當x = 0.9時,可以得到一個τf ~0 pm/℃的微波介電材料0.9 ZnTa2O6-0.1 ZnNb2O6,以1300℃燒結兩小時,其介電特性介電常數εr =30.7、Q×f =52700GHz、頻率溫度係數τf = 0.8ppm/℃。

    近幾年來,小型化及低成本的帶通濾波器在行動通訊系統中,已佔有重要地位,當以高介電常數的基板來實現小型化時,平面型濾波器結構是值得採用的一種,在本論文中,使用平行耦合線的U型微帶線以混合耦合的方式製作帶通濾波器。在濾波器基板製作方面,使用Al2O3及ZnNb2O6 + 5wt%CuO + 4wt%B2O3作為濾波器的基板。然而ZnNb2O6 + 5wt%CuO + 4wt%B2O3具有良好的溫度穩定性,高Q值及高εr 的特點,有效地縮小濾波器體積。其中心頻率為5GHz,BW=10﹪,去模擬與實作其最佳頻率響應,並作比較。

    The B2O3 and CuO additives effectively lowered the intering temperature of ZnNb2O6 ceramics to below 800℃. The sintering temperature of CuO-doped ZnNb2O6 decreased with increasing B2O3 content. Dielectric constant εr was not significantly changed and increased slightly with increasing B2O3 content. The Q×f value was found to be function of both the sintering temperature and the amount of additives. With 5wt% CuO and 4wt% B2O3 additions, the Q×f value varied from 24000 to 46800 GHz as the sintering temperature increased from 780℃ to 900℃ for 2h. Zero temperature coefficient of the resonant frequency can be achieved by properly adjusting the concentration of additives. For low-firing multiplayer application, dielectric properties of εr ~23.3、Q×f ~46800GHz and τf ~ -6.7ppm/℃ can be obtained for doped ZnNb2O6 ceramics sintered at 900℃ for 2h.

    The system of xZnTa2O6 + (1-x)ZnNb2O6 ceramics, with x = 0.9, a new micro-wave dielectric ceramic material 0.9 ZnTa2O6 -0.1 ZnNb2O6 is suggested and poss-esses the dielectric properties of a dielectric constant εr of 30.7 、 Q×f value of 52700 GHz and a τf value of 0.8 /℃ for 2h.

    In the recent, miniature and low cost bandpass filters are very important in mobile communication systems. The planar filter structure is one of the possible choices for its compactness when realized with a high dielectric constant substract. In the paper, we used microstrip hairpin resonators to fabricate microwave bandpass filter based on mixed-coupled mechamism. In the aspect of the filter substract manufacture, we used Al2O3 and ZnNb2O6 + 5wt%CuO + 4wt%B2O3 to be the substracts of the filter. ZnNb2O6 + 5wt% CuO + 4wt% B2O3 have been used due to its good temperature stability , high Q value and high relative dielectric constant , respectively so that the filter can be miniaturized and realized good frequency response. The standard of the filter is 5 GHz and the bandwidth of the filter is 10% . And we compared the result of the simulation with the result of the measurement of the rmance.

    第一章 緒論……………………………………………….1 第二章 原理……………………………………………….3 2-1 介電原理……………………………………………………3 2-2 介電共振器…………………………………………………7 2-3 燒結原理…………………………………………………..11 2-3-1 再結晶與晶粒成長…………………………………….11 2-3-2 燒結理論和液相燒結………………………………….12 2-4 微帶線原理………………………………………………...14 2-4-1 微帶傳輸線介紹……………………………………..14 2-4-2 微帶線傳輸組態……………………………………..15 2-4-3 微帶線各項參數公式………………………………..16 2-4-4 微帶線的不連續效應………………………………..21 第三章 微波濾波器電路理論及設計……………………23 3-1 微波濾波器的種類………………………………………...23 3-2 微帶線諧振器種類………………………………………...24 3-3 諧振器間耦合型態………………………………………...25 3-3-1 電場(電容性)耦合……………………………………...25 3-3-2 磁場(電感性)耦合……………………………………...27 3-3-3 混合性耦合……………………………………………..29 3-4 諧振器間耦合量之量測……………………………………31 3-5 輸入點及輸出點的設計……………………………………31 3-6 微小型的U型共振器原理…………………………………33 3-7 濾波器設計步驟…………………………………………….36 第四章 實驗製程與量測結果…………………………….39 4-1 製程程序……………………………………………………39 4-1-1 ZnNb2O6 + CuO + B2O3 ……………………………….39 4-1-2 xZnTa2O6 + (1-x)ZnNb2O6 …………………………..40 4-1-3 濾波器之製作………………………………………….41 4-2 微波特性的量測方法與步驟……………………………….44 4-3 實驗量測結果與討論 ………………………………..……47 4-3-1 添加B2O3對ZnNb2O6 + CuO的影響……………..47 4-3-2 xZnTa2O6 + (1-x)ZnNb2O6 之特性探討……………50 4-3-3 濾波器實驗結果與討論…………………………….52 第五章 結論……………………………………………58 參考文獻…………………………………………………110 圖表目錄 圖2-1 四種極化機制圖(a)電子極化(b)方向極化 (c)原子極化(d)空間電荷極化……………………….63 圖2-2 極化頻率分佈圖………………………………………..64 圖2-3電磁波由介質1(ε1,μ1)入射到介質2(ε2,μ2)………..65 圖2-4 電磁波發生全反射之情形……………………………….65 圖2-5 (a)圓柱型DR之TE01δ mode電場分佈圖(b)圓柱型DR 之TE01δ mode磁場分佈圖………………………………66 圖2-5 (c)圓柱型DR之TM01δ mode電場分佈圖(d)圓柱型DR 之TM01δ mode磁場分佈圖………………………………67 圖2-5 (e)圓柱型DR之HEM11δ mode電場分佈圖(f)圓柱型DR 之HEM11δ mode磁場分佈圖…………………………….68 圖2-5 (g)圓柱型DR之HEM11δ mode電場分佈圖(ψ=0)(h) 圓柱型DR之HEM11δ mode磁場分佈圖(ψ=π/2)………69 圖2-6圓柱型DR中各種mode之外部與內部功率傳輸比……..70 圖2-7 DR置於兩導體基板……………………………………….71 圖2-8(a)微帶線之外觀圖(b)微帶線之電場與磁場分佈圖………72 圖2-9 微帶線開路端效應 (a) 微帶線開路端圖(b)等效邊緣 電容的等效電路圖(c)等效延伸傳輸線……………………73 圖2-10 直角彎折效應的結構圖與等效電路圖…………………..73 圖3-1(a) Butterworth Filter (b) Chebyshev Filter (c)Elliptic Function Filter…………………………….74 圖3-2 interdigital(指叉型) ……………………………………….75 圖3-3 平行耦合線濾波器…………………………………………75 圖3-4 U型諧振器與U型諧振器濾波器………………………….75 圖3-5 (a) 短路微帶線共振器之電場強度分佈圖 (b) 開路微帶線共振器之電場強度分佈圖………………...76 圖3-6 幾種電場耦合的共振器佈局…………………………………76 圖3-7 (a)兩電場耦合的共振器之等效電路圖 (b)表示 電場耦合使用導納反轉子的另一種等效電路圖………………77 圖3-8 當 以及 的等效π型網路……………………….78 圖3-9 當 以及 的等效T型網路……………………..78 圖3-10 (a) 短路微帶線共振器之磁場強度分佈圖 (b) 開路微帶線共振器之磁場強度分佈圖…………………79 圖3-11幾種磁場耦合的共振器佈局………………………………….79 圖3-12 (a)兩磁場耦合的共振器之等效電路圖 (b)表示 磁場耦合使用阻抗反轉子的另一種等效電路圖………………80 圖3-13 幾種混和耦合的共振器佈局…………………………………81 圖3-14 (a)兩混和耦合的共振器之等效電路圖(b)使用導納反轉子和阻抗反轉子個別代表電場、磁場耦合的另一種等效電路圖……….82 圖3-15 (a)單一諧振器之諧振頻率量測 (b)單一諧振器之諧振頻率響應…………………………83 圖3-16 (a)耦合結構之頻率響應量測 (b)耦合結構之頻率響應量測示意圖……………………83 圖3-17 (a)四分之一波長微帶線諧振器的傳輸線示意圖 (b)二分之一波長微帶線諧振器的傳輸線示意圖………84 圖3-18:U型共振器結構(a)傳統型(b)使用電容之小型化U型共振器 (c)使用耦合線之小型化U型共振器……………………………….84 圖3-19:具有耦合線之Hairpin共振器結構之參數表示圖………85 圖3-20(a):一段耦合線表示圖與其ABCD矩陣………………….85 圖3-20(b):一段傳輸線表示圖與其ABCD矩陣………………….86 圖3-21:具有平行耦合線之步階式阻抗hairpin濾波器…………86 圖3-22 共振點之等效電路…………………………………………86 圖3-23 兩個U型微帶共振器加耦合線之混合性耦合佈局………87 圖3-24 兩個諧振器間距之頻率響應………………………………87 圖3-25 使用Al2O3基板之Hairpin濾波器(有加耦合線)………87 圖4-1 ZnNb2O6 + CuO + B2O3 實驗流程圖………………………88 圖4-2 xZnTa2O6 + (1-x)ZnNb2O6實驗流程圖……………………89 圖4-3 舉離法流程圖:(a)曝光 (b)顯影 (c)鍍金屬膜 (d)震掉光阻……………………………90 圖4-4 測量介電常數的系統圖……………………………………90 圖4-5 測量品質因素系統圖………………………………………..91 圖4-6 ZnNb2O6 添加5wt%CuO之後再添加不同重量百分比的B2O3(a)2wt%(b)3wt%(c)4wt%(d)5wt%並且燒結900℃ for 2h之x-ray圖 |*:(ZnCu2)Nb2O8| …………………..91 圖4-7 ZnNb2O6 添加5wt% 的CuO及添加4wt% 的B2O3於不同燒結溫度(a)780℃(b)810℃(c)840℃(d)870℃(e)900℃ for 2h 之x-ray圖 ………………………………..92 圖4-8 ZnNb2O6 添加5wt%CuO及添加不同重量百分比的B2O3(a)2wt%(b)3wt%(c)4wt%(d)5wt%並且燒結900℃ for 2h之SEM圖…………………………………………..93 圖4-9 ZnNb2O6 添加5wt% 的CuO及添加4wt% 的B2O3於不同燒結溫度(a)780℃(b)810℃(c)840℃(d)870℃ (e)900℃ for 2h 之SEM圖…………………...94 圖4-10 ZnNb2O6之相對密度與燒結溫度關係圖…………………95 圖4-11 ZnNb2O6之介電常數與燒結溫度關係圖…………………95 圖4-12 ZnNb2O6之品質因數和共振頻率的乘積與 燒結溫度關係圖………………………………………….96 圖4-13 ZnNb2O6之頻率溫度係數(τf)與燒結溫度關係圖………96 圖4-14 xZnTa2O6-(1-x)ZnNb2O6 燒結溫度在1300℃持溫2小時,不同x的比例關係圖之X-ray圖(a) x=0.88 (b) x=0.9 (c) x=0.92 (d) x=0.94(e) x=0.96 (f) x=0.98…………………….97 圖4-15 xZnTa2O6-(1-x)ZnNb2O6 燒結溫度在1300℃持溫2小時,不同x的比例關係圖之SEM圖(a) x=0.88 (b) x=0.9 (c) x=0.92 (d) x=0.94(e) x=0.96 (f) x=0.98……………………………..98 圖4-16 xZnTa2O6-(1-x)ZnNb2O6 之x=0.9時,不同燒結溫度持溫2小時,(a)1270℃(b)1300℃(c)1330℃……………………...98 圖4-17 xZnTa2O6-(1-x)ZnNb2O6之相對密度與 燒結溫度關係圖…………………………………………….99 圖4-18 xZnTa2O6-(1-x)ZnNb2O6之介電常數與 燒結溫度關係圖………………………………………….99 圖4-19 xZnTa2O6-(1-x)ZnNb2O6之品質因數和共振頻率的乘積 (Q×f )與燒結溫度關係圖………………………………...100 圖4-20 xZnTa2O6-(1-x)ZnNb2O6之頻率溫度係數(τf) 與燒結溫度關係圖……………………………………..100 圖4-21 Hairpin filter使用Al2O3 基板之結構圖……………….101 圖4-22 Hairpin filter使用Al2O3 基板之(S21)和(S11)模擬圖….101 圖4-23 Hairpin filter使用Al2O3 基板之(S21)和 (S11)實作量測圖……………………………………….102 圖4-24 Hairpin filter使用Al2O3 基板之3dB頻寬量測圖…...102 圖4-25 Hairpin filter with coupling line使用 Al2O3 基板之結構圖………………………………….103 圖4-26 Hairpin filter with coupling line使用Al2O3 基板 之(S21)和(S11)模擬圖…………………………………..103 圖4-27 Hairpin filter with coupling line使用Al2O3 基板 之(S21)和(S11) 實作量測圖……………………………104 圖4-28 Hairpin filter with coupling line使用Al2O3 基板 之3dB頻寬量測圖……………………………………104 圖4-29 Hairpin filter使用ZnNb2O6基板之結構圖……………105 圖4-30 Hairpin filter使用ZnNb2O6基板之(S21)和(S11)模擬圖.105 圖4-31 Hairpin filter使用ZnNb2O6 基板之 (S21)和(S11)實作量測圖……………………………….106 圖4-32 Hairpin filter使用ZnNb2O6 基板之3dB頻寬量測圖.106 圖4-33 Hairpin filter with coupling line 使用ZnNb2O6 基板之結構圖…………………………..107 圖4-34 Hairpin filter with coupling line使用ZnNb2O6基板 之(S21)和(S11)模擬圖……………………………………107 圖4-35 Hairpin filter with coupling line使用ZnNb2O6基板 之(S21)和(S11) 實作量測圖……………………………..108 圖4-36 Hairpin filter with coupling line使用ZnNb2O6 基板 之3dB頻寬量測圖……………………………………..108 圖4-37 (一) Hairpin filter (二) Hairpin filter with coupling line於 Al2O3 以及 ZnNb2O6基板實作攝影圖……………..109

    [1]Edward G. Cristal, “Tapped-line coupled transmission line with applications to interdigital and combline filters, ”IEEE Trans. Microwave Theory Tech, vol 23 , pp.1007-1012, Dec.1975.
    [2]J.A.Circuit, and S.J. Fiedziuszko, “Multi-layer planar filters based on aperture couple, dual mode microstrip or stripline resonators,” IEEE MTT-S Dig, pp.1203-1206, 1992.
    [3]Seymour B Cohn, “Direct-coupled-resonator filter,” Proc. IRE, pp187-196, Feb. 1957.
    [4]M. korber. “New microstrip bandpass filter topologies,
    ”Microwave Journal ,vol.40.pp.138-144, July 1997.
    [5]M. Sagawa ,K. Takahashi, and M. Makimoto, “Miniaturized hairpin resonator filters and their application to receiver front-end MICs”, IEEE Trans. Microwave Theory Tech. Vol .37,pp. 1991-1997,Dec.1989.
    [6]J.S. Hong, and M.J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filter,” IEEE Trans. Microwave Theory Tech, vol.44, pp.2099-2109, Dec. 1996.
    [7]Kingry, Bowen, Uhlmann “Introduction to Ceramics”.
    [8] 邱碧秀:電子陶瓷材料 徐式基金會出版,p.81,1997
    [9] G.Burns:Solid State Physics p.461,1985
    [10] .K.Wankino,H.Murata,H.Tamura: .Am.Cream.Soc.,Vol.69,pp34, (1986)
    [11]W.E.Courtney “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators” IEEE. Trans. Microwave Theory Tegh. ,vol.MTT-18,p.476-485,1970
    [12].David K. Cheng ”Field and Wave Electromagnetic”
    pp407-412,1989
    [13] .D. Kajfez ”Computed Modal Field Distribution for Isolated Dieletric Resonators”IEEE. Trans. MTT, Vol. MTT-32, pp.1609-1616,1984
    [14] .D.Kajfez”Basic Principle Give Understanding of Dielectric Wave- guides and Resonators”Microwave System News,Vol.13,pp.152-161 ,(1983)
    [15] D.Kajfez and P.Guillon”Dielectric Resonators”,1989
    [16] W.J.Huppmann and G.Petzow”The Elementary Mechanisms of Liquid Sintering”,Sintering Processes,Plenum Press,pp.189-202, (1979)
    [17].H.S.Cannon and F.V.Lenel in “Proceedings of the Plansee Seminar”, Edited by F.Benesovsky Metallwerk Plansee,Reutte,p.106,1953
    [18]R. Raj and C. K. Chyung “Solution Reprecipitation Creep in Glass Ceramics ” Acta Metall, pp. 159-166,1980.
    [19].V.N.Eremenko,Y.V.Naidich and I.A.Lenko,”Liquid (Consolation New York,1970,ch4)
    [20].K.S.Hwang,Phd Thesis,Rensselaer Ploytechnic in Troy(1984).
    [21].J.W.Cahn and R.B.Heady,J.Am.Ceram.pp.406,1970
    [22].W.J.Huppmann and G.Petzow:Sintering process,Edited by G.C. Kuczynski(Plenum Press,New York,pp.189,1980)
    [23].W.J.Huppmann and G.Petzow,Ber.Bunnsenges Phys.Chem.82, pp.308(1978)
    [24].R.M.German:Liquid Phase Sintering,(Plenum Press, New York 1985,ch4)
    [25].J.H.Jean and C.H.Lin:J.Mater.Sci.24,pp500,1989
    [26]R.B. Heady and J. W. Cahn “An Analysis of the Capillary Forces in Liquid-Phase Sintering of Spherical Particles” Metall. Trans. Vol. 1,pp 185-189, 1970.
    [27]R.B. Heady and J. W. Cahn”Analysis of Capillary Force in Liquid-Phase Sintering of Jagged Particles ” J. Am. Ceram. Soc. Vol.7 ,pp. 406-409,1970.
    [28]L.A.Trinogga ,GUO Kaizhou ,I.C.Hunter, “Practical Microstrip Circuit Design” ,Ellis Horwood,1991
    [29] K. C. Gupta, R. Garg, I. Bahl, and E Bhartis, “Microstrip Lines and Slotlines” , Second Edition, Artech House, Boston, 1996.
    [30]E. O. Hammerstard, “Proceedings of the European Microwave Conference”, p. 268-272 , 1975
    [31] David M.Pozar “Microwave Engineering”, Addison-Wesley,1998
    [32]E. J. Denlinger "Losses of microstrip lines” IEEE Trans., MIT-28, June, p.513–522,1980
    [33] R. A. Pucel, D. J. Masse, and C. E Hartwig "Losses in microstrip” IEEE Trans., MIT-16, June ,p.342-3501968,. Correction in IEEE Trans., MTT-16. Dec. 1968, p. 1064.
    [34]張盛富、戴明鳳 , ”無線通信之射頻被動電路設計” , 全華出版社,1998.
    [35]T. Edwards, “Foundations for Microstrip Circuit Design, Second Edition” ,Wiley, Chichester, U.K., 1991
    [36]M. Kirschning, R. H. Jansen, and N. H. L. Koster, "Accurate model for open and effect of microstrip lines” Electronics Letters, vol.17, p.123-125,1981
    [37]B. Easter, "The equivalent circuit of some microstrip discontinuities” IEEE Trans.,MTT-23, p.655-660,1975
    [38] R.L.Geiger,P.E.Allen,N.R.Strader, “VLSI Design Techniques for Analog and Digital Circuits”
    ,McGraw-Hill,p.674-685,1990
    [39] J.S.Hong and M.J.Lancaster “Couplings of Microstrip Square Open-Loop Resonators for Cross-Coupled Planar Microwave Filters” ,IEEE Transactions on Microwave
    Theory and Techniques,vol.44,p.2099-2109,1996
    [40] J.Helszajn “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits.” ,McGraw-Hill,1992
    [41]J. S. Wong, “Microstrip tapped-line filter design ”
    IEEE Trans. Microwave Theory Tech,vol.
    MTT-27,pp.44-50,Jan.1979.
    [42]International Telephone and Telegraph Corp.,Reference Data for Radio Engineers,6th Ed.Howard W.Sams Co.,Inc.
    [43]M.Makimoto and M.Sagawa“Varactor tuned bandpass filters using microstrip-line ring resonator ” IEEE MTT-S Int. Microwave Symp ,Dig. May 1986, pp411-414.
    [44]G. I. Zysman and A.K. Johnson. “Coupled transmisson line network in an inhomogeneous dielectric medium ” IEEE Trans Microwave Theory Tech , vol. MTT-17, pp. 753-759, Oct.1969.
    [45] M. Makimoto and S. Yamashita “Bandpass filters using parallel coupled strip-line stepped impedance resonators ” IEEE Trans. Microwave Theory Tech , vol, MTT-28, pp, 1413-1417,Dec.1980.
    [46]Y.Kobayashi and N.Katoh “Microwave Measurement of Dielectric Properties of Low-loss Materials by Dielectric Rod Resonator Method “ IEEE.Trans.MTT ,vol.MTT-33 ,p586-592 ,1985
    [47]O.V. Karpova:Soviet Phys. Vol. 1 ,p.220,1959
    [48]S.H.Cha:IEEE.Trans.MTT, Vol.MTT-33,p.519,1985
    [49]P. Wheless and D.Kajfez"The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators” IEEE. MTT-S ,Symposium Dig. ,p.473-476,1985
    [50]B.W.Hakki and P.D.Coleman “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range" IEEE. Trans.MTT ,vol.MTT- 8 ,p.402-410,1960
    [51]D. W. Kim. K. H.Ko. and K. S. Hong,“Influence of Copper(∥) Oxide Additions to Zinc Niobate Microwave Ceramics on Sintering Temperature and Dielectric Properties”J. Am. Ceram. Spc.84(2001)1286-1290.
    [52]B.D. Silverman, Phys.Rev.125(1962)1921.
    [53] Hiroyuki Yabuki, Morikazu Sagawa, Mitsuo Makimoto“Voltage controlled push-push oscillators using miniaturized hairpin resonators ”IEEE.1991
    [54]沈俊旭碩士論文“燒結促進劑對MCT微波介電特性之影響及應用”國立成功大學電機研究所
    [55] 劉適嘉碩士論文“Ba[ZrxZn(1-x)/3Nb2(1-x)/3]O3介電陶瓷之微波特性及其應用”國立成功大學電機研究所

    下載圖示 校內:立即公開
    校外:2003-06-24公開
    QR CODE