簡易檢索 / 詳目顯示

研究生: 王昱斌
Wang, Yu-Bin
論文名稱: 具省電功能電流模式脈寬調變控制器之設計
Design of Current Mode PWM Controller with Green Mode
指導教授: 梁從主
Liang, Tsorng-Juu
劉濱達
Liu, Bin-Da
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 89
中文關鍵詞: 脈寬調變省電功能
外文關鍵詞: Green Mode, PWM
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在空載時的能量損失對切換式電源供應器而言是一個大問題。為了降低待機能量損失,近年來許多組織已經制定了不同的能量消耗準則於電源供應器。本論文提出一個具有省電功能之電流模式脈寬調變控制器在。對於一個欲符合這些準則之切換式穩壓器,最有效的方法是降低切換頻率。換句話說,一個切換式穩壓器之脈寬調變控制器也應該具備脈波頻率調變的功能。本文所提出的脈寬調變控制器提供了一個以最少類比電路達成脈波頻率調變操作的辦法。為了在輕載狀態下節省能量,這種脈衝模式可以降低切換頻率與切換損失。一些實用的功能如軟啟動、斜率補償和栓鎖機制,也整合至此晶片中,使系統有較佳的效能及較低的成本。模擬結果將用來驗證所提出的控制方式之效能。最後,這個脈寬調變控制器是使用台灣積體電路製造股份有限公司所提供的0.35μm 2P4M 3.3V/5V混合訊號互補式金氧半製程來製造。晶片的全部面積大約是0.65 × 0.65 mm2。

    Energy loss at no load condition is a big problem for switching power supplies. In order to reduce the standby power losses, many organizations have constituted different energy consumption criteria for external power supplies in recent years. A current mode PWM controller with green mode is presented in this thesis. For a switching regulator to meet these criteria, the most effective way is to reduce the switching frequency. In other words, the PWM controller of a switching regulator should also have the function of PFM (Pulse frequency modulation). The proposed PWM controller uses burst mode as a solution for the PFM operation with minimal analog circuits. To save energies at light load condition, the switching frequency and the switching losses can be reduced by the burst mode operation. Also, some practical functions like soft start, slope compensation, and latch-off mechanism are integrated into this chip to provide better performance with lower cost. The simulation results are used to verify the performance of the proposed scheme. Finally, the PWM controller is fabricated with TSMC 0.35μm 2P4M 3.3V/5V mixed signal CMOS process. The total chip area is about 0.65 × 0.65 mm2.

    Table of Contents 1. Introduction 1 1.1 Background ……………………………………………………………….. 1 1.2 Motivation ………………………………………………………………… 4 1.3 Organization ……………………………………………………………… 5 2. Fundamentals of Switching Regulator 6 2.1 Basic Topologies ………………………………………………………….. 6 2.1.1 Non-Isolated Switching Regulators ………………………………….. 7 2.1.2 Isolated Switching Regulators ……………………………………….. 11 2.2 Control Schemes ………………………………………………………….. 15 2.2.1 Voltage mode control ………………………………………………… 15 2.2.2 Current mode control ………………………………………………… 17 3. System Analysis and Design 20 3.1 Traditional PWM Controller and Application …………………………….. 20 3.1.1 UC3842 ………………………………………………………………. 20 3.1.2 Application Example of UC3842 …………………………………….. 22 3.2 Losses of Switching Regulator ……………………………………………. 23 3.2.1 Losses Associated with the Power Switch …………………………… 23 3.2.2 Losses Associated with the Diode ……………………………………. 24 3.2.3 Losses Associated with the Magnetic Components ………………….. 26 3.2.4 Losses Associated with the Other Devices …………………………... 28 3.3 Energy Saving Solutions at No-Load Condition …………………………. 29 3.3.1 Conduction Losses …………………………………………………… 29 3.3.2 Fixed Losses …………………………………………………………. 29 3.3.3 Switching Losses …………………………………………………….. 30 3.4 Other Improvement ………………………………………………………. 33 3.4.1 Soft Start …………………………………………………………….. 33 3.4.2 Slope Compensation ………………………………………………… 35 3.4.3 Latch-off Protection ………………………………………………….. 36 4. Integrated Circuit Design 37 4.1 The Architecture of the proposed PWM controller ……………………….. 37 4.2 Bias Circuits ................................................................................................. 39 4.2.1 Constant Transconductance Bias Circuit .............................................. 39 4.2.2 Wide-Swing Cascode Current Mirror ……………………………….. 41 4.2.3 Wide-Swing Constant Transconductance Bias Circuit ………………. 42 4.3 OP Amps ………………………………………………………………….. 43 4.3.1 Two-Stage OP Amp …………………………………………………. 43 4.3.2 Error Amplifier ………………………………………………………. 48 4.3.3 Folded Cascode OP Amp …….............................................................. 51 4.4 Comparator ………………………………………………………………... 54 4.5 Bandgap Voltage Reference ………………………………………………. 57 4.6 Linear regulator …………………………………………………………… 62 4.7 Oscillator ………………………………………………………………….. 66 4.8 Soft start circuit …………………………………………………………… 68 4.9 OVP Latch ………………………………………………………………… 69 4.10 Current Limiter and PWM Comparator …………………………………... 71 4.11 UVLO and Vreg Good Detector ………………………………………….. 71 4.12 PWM Control Circuit ……………………………………………………... 73 4.13 Output Buffer ……………………………………………………………... 74 5. Simulation and Measurement Results 75 5.1 Layout ……………………………………………………………………... 75 5.2 Simulation Results ………………………………………………………… 77 5.2.1 The Function of Green Mode ………………………………………… 78 5.2.2 The Function of Soft Start ……………………………………………. 80 5.2.3 The Function of Slope Compensation ……………………………….. 81 5.2.4 The Function of OVP Latch ………………………………………….. 83 5.3 Measurement Results of the Proposed PWM Controller …………………. 83 6. Conclusions and Future Work 86 6.1 Conclusions ……………………………………………………………….. 86 6.2 Future Work ……………………………………………………………… 86 References 87

    [1] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, Third Edition, John Wiley & Sons, 2003
    [2] R. W. Erickson, and D. Maksimovic, Fundamental of Power Electronics, Second Edition, Kluwer Academic Publishers, 2001
    [3] D. Maksimovic, and S. Dhar, “Switched-capacitor DC-DC converters for low-power on-chip applications,” Power Electronics Specialists Conference, 1999. PESC 99. 30th Annual IEEE Volume 1, 27 June- 1 July 1999 Page(s):54 - 59 Vol.1
    [4] P. Bertoldi, “European Code of Conduct to Improve Energy Efficiency of Power Supply: the First Policy Action around the Worldwide Addressing External Power Supplies,” Applied Power Electronics Conference and Exposition, 2004. APEC ’04 Nineteenth Annual IEEE Volume 1, 2004 Page(s):329 - 331 Vol.1
    [5] “Energy Star Program Requirements for External Power Supplies,” version 1.1, Energy Star, March 2006
    [6] A. I. Pressman, Switching Power Supply Design, Second Edition, McGraw-Hill, 1998
    [7] D. M. Sable, and R.B. Ridley, “Comparison of performance of single-loop and current-injection control for PWM converters that operate in both continuous and discontinuous modes of operation,” Power Electronics, IEEE Transactions on Volume 7, Issue 1, Jan. 1992 Page(s):136 - 142
    [8] R. Mammano, “Switching Power Supply Topology Voltage Mode vs. Current Mode,” Texas Instruments Inc., June 27, 1994
    [9] “UC3842 Current Mode PWM Controller,” Texas Instruments Inc., 2003
    [10] “UCC38C42 Family of High-Speed, BiCMOS Current Mode PWM Controllers,” Texas Instruments Inc., February, 2002
    [11] M. Brown, Power Supply Cookbook, Second Edition, Butterworth-Heinamann, 2001
    [12] M. Brown, Practical Switching Power Supply Design, Academic Press, 1990
    [13] M. Oloughlin, “Bootstrap Circuit for Green Mode Applications,” Texas Instruments Inc., January, 2006
    [14] “NCP1230 Low-Standby Power Soft Skip Mode Controller,” ON Semiconductor, 2004
    [15] “FAN7601 Green Current Mode PWM Controller,” Fairchild Semiconductor, 2003
    [16] J. Hwang, and A. Chee, “Improving efficiency of a pre-/post-switching regulator (PFC/PWM) at light loads using green-mode function,” Applied Power Electronics Conference and Exposition, 1998. APEC ’98. Conference Proceedings 1998, Thirteenth Annual Volume 2, 15-19 Feb. 1998 Page(s):669 - 675 Vol.2
    [17] K. Billings, Switchmode Power Supply Handbook, McGraw-Hill, 1989
    [18] F. J. D. Stasi, and T. Szepesi, “A 5 A 100 kHz monolithic bipolar DC/DC converter,” Power Electronics and Applications, 1993. Fifth European Conference on 13-16 Sep. 1993 Page(s):201 - 208 Vol.2
    [19] F. Y. Shih, Y. T. Chen, D. Y. Chen, and Y. P. Wu, “A Pspice-compatible model of PWM IC for switching power converters with soft-start characteristic,” Power Electronics and Device Systems, 1995. Proceedings of 1995 International Conference on 21-24 Feb. 1995 Page(s):335 - 340 Vol.1
    [20] “Modeling, Analysis and Compensation of the Current-Mode Converter,” Texas Instruments Inc., 1999
    [21] D. Johns, and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, 1997
    [22] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001
    [23] R. Gregorain, Introduction to CMOS OP-Amps and Comparators, John Wiley & Sons, 1999
    [24] K. N. Leung, and P. K. T. Mok, “A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device,” Solid-State Circuits, IEEE Journal of Volume 37, Issue 4, April 2002 Page(s):526 - 530
    [25] H. J. Shin, S. K. Reynolds, K. R. Wrenner, T. Rajeevakumar, S. Gowda, and D.J. Pearson, “Low-dropout on-chip voltage regulator for low-power circuits,” Low Power Electronics, 1994. Digest of Technical Papers, IEEE Symposium 10-12 Oct. 1994 Page(s):76 - 77
    [26] V. Gupta, G. A. Rincon-Mora, and P. Raha, “Analysis and design of monolithic, high PSR, linear regulators for SoC applications,” SOC Conference, 2004. Proceedings, IEEE International 12-15 Sept. 2004 Page(s):311 - 315
    [27] “UCC3813 Low Power Economy BiCMOS Current Mode PWM,” Texas Instruments Inc., 2005
    [28] S. Brown, and Z. Vranesic, Fundamentals of Digital Logic with VHDL Design, International Editions, McGraw-Hill, 2000

    無法下載圖示 校內:2105-08-02公開
    校外:2105-08-02公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE