簡易檢索 / 詳目顯示

研究生: 鄭智元
Cheng, Chih-Yuan
論文名稱: 基於模型預測控制器的主動切換式追蹤器以適用於具有輸入飽和限制之被動切換系統
Active Switching Tracker based on Model-Predictive Control with Input Constraint for a Passively Switching MIMO System
指導教授: 蔡聖鴻
Tsai, Sheng-Hong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 32
中文關鍵詞: 輸入飽和限制數位重新設計模型預測控制主動切換機制
外文關鍵詞: Input constraint, digital redesign, model-predictive control, active switching mechanism
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在某些情況下,一系統會被動地由一個子系統切換到另一個子系統。本論文針對此問題提出一具有主動切換機制的軌跡追蹤器。藉由將反飽和架構與模型預測控制結合以盡可能在不損耗追蹤效果情況下解決輸入飽和的問題並同時具有良好的軌跡追蹤效果。該機制可以及時識別系統模型切換,並透過主動切換機制,轉換到相對應的控制器以維持良好的追蹤效果。

    In some cases, a system may switch from one model to another, passively. In this thesis, an active switching mechanism is proposed for a passively switching MIMO system. The modified optimal anti-windup control scheme is combined with model-predictive control (MPC), to resolve the input constraint problem for the passively switching MIMO system with input constraints, without losing the good tracking performance as possible. The proposed model-predictive control scheme can identify the switching instant immediately, and it systematically compresses a huge control input within the desired range by adjusting the well-designed weighting matrix for the linear time-invariant (LTI) constrained system.

    中文摘要...I Abstract...II Acknowledgments...III List of Contents...IV List of Figures...V Chapter 1. Introduction...1 2. Problem Description...4 3. Prediction-Based Digital Redesign...6 3.1 Linear quadratic analog tracker design...7 3.2 Digital redesign of the linear quadratic analog tracker ...8 4. Model Predictive Control...11 4.1 Model-predictive control without constraint...12 4.2 Receding horizon control...14 4.3 Model-predictive control with constraint...15 5. Design Procedure...17 6. An Illustrative Example...20 7. Conclusion...29 References...30

    [1] Dedieu, H. and Ogorzalek, M. J., “Controlling chaos in Chua’s circuit via sampled inputs,” International Journal of Bifurcation Chaos, vol. 4(2), pp. 447-455, 1994.
    [2] Gilbert, E. G., “Controllability and observability in multivariable control systems,” SIAM Journal on Control, vol. 2(1), pp. 128-151, 1963.
    [3] Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach”, IEEE Transcations on Circuits and Systems– I, Fundamental Theory and Applications, vol. 47(11), pp. 1557-1570, 2000.
    [4] Guo, S. M., Shieh, L. S., Lin, C. F., and Chandra, J., “State-space self-tuning control for nonlinear stochastic and chaotic hybrid systems,” International Journal Bifurcation and Chaos, vol. 11(4), pp. 1079-1113, 2001.
    [5] Hu, T., Teel, A. R., and Zaccarian, L., “Anti-windup synthesis for linear control systems with input saturation: Achieving regional, nonlinear performance,” Automatica, vol. 44(2), pp. 512-519, 2008.
    [6] Johansen, T. A., Petersen, I., and Slupphaug, O., “Explicit sub-optimal linear quadratic regulation with state and input constraints,” Automatica, vol. 38(7), pp. 1099-1111, 2002.
    [7] Kim, J. S., Yoon, T. W., Shim, H., and Seo, J. H., “Switching adaptive output feedback model-predictive control for a class of input-constrained linear plants,” IET Control Theory Application, vol. 2(7), pp. 573-582, 2008.
    [8] Kothare, M. V., Campo, P. J., Morari, M., and Nett, C. N., “A unified framework for the study of anti-windup designs,” Automatica, vol. 30(12), pp. 1869-1883, 1994.
    [9] Kuo, B. C., Digital Control Systems. Holt, Rinehart and Winston, New York, 1980.
    [10] Lewis, F. L. and Syrmos, V. L., Optimal Control. John Wiley & Sons, New York 1995.
    [11] Maeder, U., Cagienard, R., and Morari, M., Explicit Model Predictive Control. Springer-Berlin, Heidelberg, 2007.
    [12] Mare, J. B. and De Dona, J. A., “Solution of the input-constrained LQR problem using dynamic programming,” Systems & Control Letters, vol. 56(5), pp. 342-348, 2007.
    [13] Mulder, E. F., Tiwari, P. Y., and Kothare, M. V., “Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization,” Automatica, vol. 45(3), pp. 805-811, 2009.
    [14] Sawada, K., Kiyama, T., and Iwasaki, T., “Generalized sector synthesis of output feedback control with anti-windup structure,” System & Control Letter, vol. 58(6), pp. 421-428, 2009.
    [15] Shieh, L. S., Chen, G., and Tsai, J. S. H., “Hybrid suboptimal control of multi-rate multi-loop sampled-data systems,” International Journal of Systems Science, vol. 23(6), pp. 839-854, 1992.
    [16] Shieh, L. S., Wang, W. M., and Appu Panicker, M. K., “Design of PAM and PWM digital controller for cascaded analog system,” ISA Transactions, vol. 37(3), pp. 201-213, 1998.
    [17] Shiu, Y. C., Tsai, J. S. H. , Guo, S. M., Shieh, L. S., and Han, Z., “Fault-tolerant tracker for interconnected large-scale nonlinear systems with input constraint,” The 4th Interdisciplinary Chaos Symposium on Chaos and Complex Systems (CCS2012), Antalya, Turkey, 2012.
    [18] Solmaz, S. K. and Faryar, J., “Modified anti-windup compensators for stable plants,” IEEE Transactions on Automatic Control, vol. 54(8), pp. 1934-1939, 2009.
    [19] Tarbouriech, S. and Turner, M., “Anti-windup design: an overview of some recent advances and open problems,” IET Control Theory Application, vol. 3(1), pp. 1-19, 2009.
    [20] Tiwari, P. Y., Mulder, E. F., and Kothare, M. V., “Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52(12), pp. 2341-2345, 2007.
    [21] Tsai, J. S. H., Du, Y. Y., Zhuang, W. Z., Guo, S. M., Chen, C. W., and Shieh, L. S., “Optimal anti-windup digital redesign of multi-input multi-output control systems under input constraints,” IET Control Theory Applications, vol. 5(3), pp. 447-464, 2011.
    [22] Valluri, S. and Soroush, M., “A non-linear controller design method for processes with saturating actuators,” International Journal Control, vol. 76(7), pp. 698-716, 2003.
    [23] Wang, L.P., Model Predictive Control System Design and Implementation using MATLAB. Springer, 2009.
    [24] Wu, F. and Lu, B., “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems & Control Letters, vol. 52(4), pp. 305-322, 2004.
    [25] Yoon, S. S., Park, J. K., and Yoon, T. W., “Dynamic anti-windup scheme for feedback linearizable nonlinear control systems with saturating inputs,” Automatica, vol. 44(12), pp. 3176-3180, 2008.
    [26] Zaccarian, L., Nesic, D., and Teel, A. R., “L2 anti-windup for linear dead-time systems,” System Control Letter, vol. 54(12), pp. 1205-1217, 2005.
    [27] Zaccarian, L. and Teel, A. R., “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49(11), pp. 2055-2061, 2004.

    下載圖示 校內:2022-12-31公開
    校外:2022-12-31公開
    QR CODE