簡易檢索 / 詳目顯示

研究生: 李韋華
Li, Wei-Hua
論文名稱: 兼具自動功率調節技術之在線型電動車充電系統設計與研製
Design and Implementation of On-Line Electric Vehicles with Automatic Power Regulation Capability
指導教授: 黃世杰
Huang, Shyh-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 107
中文關鍵詞: 在線型電動車功率調節錯位
外文關鍵詞: On-line electric vehicle, power regulation, misalignment
相關次數: 點閱:147下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一套兼具自動功率調節技術之在線型電動車充電系統,可針對行駛中之電動車進行在線供電,用以提升車輛之可行駛里程,並可有效減少車載電池容量,同時改善現今電池儲存量問題。此外,本文針對電能傳輸端與接收端間之對位偏移與兩線圈之耦合度造成之傳輸效能低落問題加以有效改進,提出一套可根據車輛位置彈性調整充電模組之控制方法,而為驗證所提方法之可行性,並已建立一套在線型充電平台進行電能傳輸實測,測試結果輔以說明本論文所設計之線型電動車充電系統,確已兼具應用潛力及工業參考價值。

    This thesis proposes an on-line electric vehicle with automatic power regulation capability. This design is capable of supplying the power for the moving electric vehicles, by which the available mileage that the vehicle can reach is extended and the required capacity of on-board batteries is meanwhile decreased, hence improving the battery storage problem that is encountered. Moreover, considering the misalignment between transmitting side and receiving side that will lower the power transfer efficiency, the study has proposed a control method which is capable of automatic adjusting the power output based on the locations of vehicles. With anticipation of validating the feasibility of this proposed method, the on-line electric vehicle platform is realized for the evaluation of power transfer under different scenarios. Experimental results help illuminate the application potential and industry values of the method for the application that is investigated.

    中文摘要 I 英文摘要 II 誌謝 V 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1-1 研究背景與動機 1 1-2 研究方法及目的 2 1-3 內容大綱 4 第二章 在線型電動車充電系統平台分析 5 2-1前言 5 2-2換流器架構比較 7 2-2-1 全橋換流器 7 2-2-2 半橋換流器 8 2-3 在線型電能傳輸系統之等效電路模型 8 2-4 補償電路之諧振特性分析 8 2-4-1 串-串聯補償架構之諧振特性分析 11 2-4-2 諧振槽特性分析 16 2-4-3 錯位情況之特性分析 18 2-5 整流濾波電路與換流器分析 24 2-5-1 整流濾波電路分析 25 2-5-2 非對稱脈波寬度調變理論 25 2-6 感應線圈之結構設計及磁場模擬分析 27 第三章 系統軟硬體電路設計與規劃 34 3-1 前言 34 3-2 在線型電動車充電系統之主電路架構 35 3-2-1 半橋換流器模組 36 3-2-2 開關驅動電路 36 3-2-3 感應線圈設計及補償電路參數 41 3-3 在線型電能傳輸平台供電策略 47 3-4 控制電路設計 48 3-5 在線型電動車充電系統之實體電路圖 50 第四章 系統實測結果 52 4-1 簡介 52 4-2 在線型電動車充電系統變載測試 53 4-3 在線型感應線圈之錯位測試 60 4-3-1 錯位情況之輸出特性 60 4-3-2 在線型線圈特性實測 66 4-3-3 回授點訊號評估 73 4-4 在線型電動車充電系統實測 76 4-5 系統整體轉換效率測試 96 第五章 結論與未來研究方向 98 5-1 結論 98 5-2 未來研究方向 99 參考文獻 100

    [1] Y. Nagatsuka, N. Ehara, Y. Kaneko, S. Abe, and T. Yasuda, “Compact Contactless Power Transfer System for Electric Vehicles,” IEEE International Power Electronics Conference, Sapporo, Japan, pp. 807-813, June 2010.
    [2] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design Considerations for a Contactless Electric Vehicle Battery Charger,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1308-1314, October 2005.
    [3] J. Sallan, J. L. Villa, A. LIombart, and J. F Sanz, “Optimal Design of ICPT Systems Applied to Electric Vehicle Battery Charge,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, pp. 2140-2150, June 2009.
    [4] B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, “Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers,” IEEE Transactions on Power Electronics, Vol. 24, No. 7, pp. 1819-1825, July 2009.
    [5] C. J. Chen, T. H. Chu, C. L. Lin, and Z. C. Jou, “A Study of Loosely Coupled Coils for Wireless Power Transfer,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 57, No. 7, pp. 536-540, July 2010.
    [6] S. H. Lee and R. D. Lorenz, “Development and Validation of Model for 95%-Efficiency 220-W Wireless Power Transfer Over a 30-cm Air Gap,” IEEE Transactions on Industry Applications, Vol. 47, No. 6, pp. 2495-2504, November 2011.
    [7] S. Y. R. Hui and W. W. C. Ho, “A New Generation of Universal Contactless Battery Charging Platform for Portable Consumer Electronic Equipment,” IEEE Transactions on Power Electronics, Vol. 20, No. 3, pp. 620-627, May 2005.
    [8] E. Waffenschmidt, “Wireless Power for Mobile Devices,” IEEE International Telecommunications Energy Conference, Amsterdam, Netherlands, pp. 1-9, October 2011.
    [9] P. Meyer, P. Germano, M. Markovic, and Y. Perriard, “Design of a Contactless Energy-Transfer System for Desktop Peripherals,” IEEE Transactions on Industry Applications, Vol. 47, No. 4, pp. 1643-1651, July 2011.
    [10] J. P. W. Chow, N. Chen, H. S. H. Chung, and L. L. H. Chan, “Misalignment Tolerable Coil Structure for Biomedical Applications with Wireless Power Transfer,” International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, pp. 775-778, July 2013.
    [11] J. P. W. Chow, N. Chen, H. S. H. Chung, and L. L. H. Chan, “Misalignment Tolerable Coil Structure for Biomedical Applications with Wireless Power Transfer,” International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, pp. 775-778, July 2013.
    [12] T. Sun, X. Xie, G. Li, Y. Gu, Y. Deng, and Z. Wang, “A Two-Hop Wireless Power Transfer System with an Efficiency-Enhanced Power Receiver for Motion-Free Capsule Endoscopy Inspection,” IEEE Transactions on Biomedical Engineering, Vol. 59, No. 11, pp. 3247-3254, November 2012.
    [13] W. Zhou and H. Ma, “Design Considerations of Compensation Topologies in ICPT System,” IEEE Applied Power Electronics Conference, California, USA, pp. 985-990, February 2007.
    [14] O. H. Stielau and G. A. Covic, “Design of Loosely Coupled Inductive Power Transfer Systems,” IEEE International Conference on Power System Technology, Perth, Australia, Vol. 1, pp. 85-90, December 2000.
    [15] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power Transfer Capability and Bifurcation Phenomena of Loosely Coupled Inductive Power Transfer Systems,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 1, pp. 148-157, February 2004.
    [16] W. Zhou and H. Ma, “Design Considerations of Compensation Topologies in ICPT System,” IEEE Applied Power Electronics Conference, California, USA, pp. 985-990, February 2007.
    [17] S. Hasanzadeh and S. Vaez-Zadeh, “Enhancement of Overall Coupling Coefficient and Efficiency of Contactless Energy Transmission Systems,” IEEE Power Electronics, Drive Systems and Technologies Conference, Tehran, Iran, pp. 638-643, February 2011.
    [18] R. Trevisan and A. Costanzo, “A 1-kW Contactless Energy Transfer System Based on a Rotary Transformer for Sealing Rollers,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 11, pp. 6337-6345, November 2014.
    [19] Z. N. Low, R. A. Chinga, R. Tseng, and J. Lin, “Design and Test of a High-Power High-Efficiency Loosely Coupled Planar Wireless Power Transfer System,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, pp. 1801-1812, May 2009.
    [20] W. Zhang and C. C. Mi, “Compensation Topologies of High-Power Wireless Power Transfer Systems,” IEEE Transactions on Vehicular Technology, Vol. 65, No. 6, pp. 4768-4778, July 2015.
    [21] K. Knaisch, M. Springmann, and P. Gratzfeld, “Comparison of Coil Topologies for Inductive Power Transfer Under the influence of ferrite and aluminum,” IEEE Ecological Vehicles and Renewable Energies Conference, Monte Carlo, Monaco, pp. 1-9, April 2016.
    [22] M. Budhia, G. A. Covic, and J. T. Boys, “Design and Optimisation of Magnetic Structures for Lumped Inductive Power Transfer systems,” IEEE Energy Conversion Congress and Exposition Conference, San Jose, USA, pp. 2081-2088, September 2009.
    [23] G. Ombach, D. Kurschner, S. Mathar, and W. Chlebosz, “Optimum Magnetic Solution for Interoperable System for Stationary Wireless EV Charging,” IEEE Ecological Vehicles and Renewable Energies Conference, Monte Carlo, Monaco, pp. 1-8, March 2015.
    [24] M. Budhia, J. T. Boys, G. A. Covic, and C.-Y. Huang, “Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, pp. 318-328, November 2013.
    [25] T. C. Beh, M. Kato, T. Imura, S. Oh, and Y. Hori, “Automated Impedance Matching System for Robust Wireless Power Transfer Via Magnetic Resonance Coupling,” IEEE Transactions on Industrial Electronics, Vol. 60, No. 9, pp. 3689-3698, June 2013.
    [26] K. Ishida, T. Sakurai, and M. Takamiya, “Wireless Power Transfer with Zero-Phase-Difference Capacitance Control,” IEEE Transactions on Circuits and Systems, Vol. 62, No. 4, pp. 938-947, April 2015.
    [27] J. Bito,S. Jeong, S. Jeong, and M. M. Tentzeris, “A Real-Time Electrically Controlled Active Matching Circuit Utilizing Genetic Algorithms for Wireless Power Transfer to Biomedical Implants,” IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 2, pp. 365-374, February 2015.
    [28] Z. Zhang, K.T. Chau, C. Qiu and C. Liu, “Energy Encryption for Wireless Power Transfer,” IEEE Transactions on Power Electronics, Vol. 30, No. 9, pp. 5237-5246, October 2015.
    [29] D. Ahn and S. Hong, “Wireless Power Transfer Resonance Coupling Amplification by Load-Modulation Switching Controller,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 2, pp 898-909, Feburary 2015.
    [30] H. Li, J. Li, K. Wang, W. Chen, and X. Yang, “A Maximum Efficiency Point Tracking Control Scheme for Wireless Power Transfer Systems Using Magnetic Resonant Coupling,” IEEE Transactions on Power Electronics, Vol. 30, No. 7, pp 3998-4008, July 2015.
    [31] S. Pakorn, N. B. Minh, and F. Hiroshi, “Estimation and Control of Lateral Displacement of Electric Vehicle Using WPT Information,” IEEE Mechatronics Conference, Nagoya, Japan, pp. 329-334, March 2015.
    [32] T. F. Wu, J. G. Yang, C. L. Kuo, and Y. C. Wu, “Soft-Switching Bidirectional Isolated Full-Bridge Converter with Active and Passive Snubbers,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 3, pp. 1368-1376, March 2014.
    [33] X. W. Pan and A. K. Rathore, “Novel Bidirectional Snubberless Naturally Commutated Soft-Switching Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Vehicles,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 5, pp. 2307-2315, May 2014.
    [34] J. Dudrik and N. D. Trip, “Soft-Switching PS-PWM DC-DC Converter for Full-Load Range Applications,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 8, pp. 2807-2814, August 2010.
    [35] C. Duan, C. G. Jiang, A. Taylor, and K. Bai, “Design of a Zero-Voltage-Switching Large-Air-Gap Wireless Charger with Low Electric Stress for Electric Vehicles,“ IET Power Electronics, Vol. 6, No. 9, pp. 1742-1750, November 2013.
    [36] T. Morimoto, S. Shirakawa, O. Koudriavtsev, and M. Nakaoka, “Zero-Voltage and Zero-Current Hybrid Soft-Switching Phase-Shifted PWM DC-DC Power Converter for High Power Applications,” Applied Power Electronics Conference and Exposition, New Orleans, USA, Vol. 1, pp. 104-110, February 2000.
    [37] H. Matsumto, Y. Neba, K. Ishizaka, and R. Itoh, “Model for a Three-Phase Contactless Power Transfer System,” IEEE Transactions on Power Electronics, Vol. 26, No. 9, pp. 2676-2687, September 2010.
    [38] J. P. C. Smeets, T. T. Overboom, J. W. Jansen, and E. A. Lomonova, “Comparison of Position-Independent Contactless Energy Transfer Systems,” IEEE Transactions on Power Electronics, Vol. 28, No. 4, pp. 2059-2067, April 2013.
    [39] H. Matsumoto, Y. Neba, K. Ishizaka, and R. Itoh, “Comparison of Characteristics on Planar Contactless Power Transfer Systems,” IEEE Transactions on Power Electronics, Vol. 27, No. 6, pp. 2980-2993, June 2012.
    [40] W. X. Zhong, X. Liu, and S. Y. R. Hui, “A Novel Single-Layer Winding Array and Receiver Coil Structure for Contactless Battery Charging Systems With Free-Positioning and Localized Charging Features,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 9, pp. 4136-4144, September 2011.
    [41] J. J. Casanova, Z. N. Low, and J. S. Lin, “A Loosely Coupled Planar Wireless Power System for Multiple Receivers,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 8, pp. 3060-3068, August 2009.
    [42] M. L. G. Kissin, G. A. Covic, and J. T. Boys, “Steady-State Flat-Pickup Loading Effects in Polyphase Inductive Power Transfer Systems,” IEEE Transactions on Industrial Electronics, Vol. 58, No. 6, pp. 2274-2282, June 2011.
    [43] H. Matsumoto, Y. Neba, H. Iura, D. Tsutsumi, K. Ishizaka, and R. Itoh, “Trifoliate Three-Phase Contactless Power Transformer in Case of Winding-Alignment,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 1, pp. 53-62, January 2014.
    [44] A. Zaheer, H. Hao, G. A. Covic and D. Kacprzak, “Investigation of Multiple Decoupled Coil Primary Pad Topologies in Lumped IPT Systems for Interoperable Electric Vehicle Charging,” IEEE Transactions on Power Electronics, Vol. 30, No. 4, pp. 1937-1955, April 2015.
    [45] B. Song, J. Shin, S. Lee, S. Shin, Y. Kim, S. Jeon and G. Jung, “Design of a High Power Transfer Pickup for On-Line Electric Vehicle (OLEV),” IEEE International Conference on Electric Vehicle Conference, Greenville, USA, pp. 1-4, March 2012.
    [46] Y. D. Ko and Y. J. Jang, “The Optimal System Design of the Online Electric Vehicle Utilizing Wireless Power Transmission Technology,” IEEE Transactions on Intelligent Transportation Systems, pp. 1255-1265, May 2013.
    [47] S. Y. Choi, B. W. Gu, S. Y. Jeong, and C. T. Rim, “Advances in Wireless Power Transfer Systems for Roadway-Powered Electric Vehicles,” IEEE Transactions on Power Electronics, Vol. 3, No. 1, pp 18-36, August 2014.
    [48] W. Zhang, S. C. Wong, C. K. Tse, and Q. Chen, “An Optimized Track Length in Roadway Inductive Power Transfer Systems,” IEEE Transactions on Power Electronics, Vol. 2, No. 3, pp. 598-608, September 2014.
    [49] SAE International, “Wireless Power Transfer of Heavy Duty Plug-In Electric Vehicles and Positioning Communication,” SAE J2954, October 2013.
    [50] S. A. Rahman, “Design of Phase Shifted Full-Bridge Converter with Current Doubler Rectifier,” Infineon Technologies, Vol. 1, January 2013.
    [51] Z. Ye, P. K. Jain, and P. C. Sen, “A Two-Stage Resonant Inverter with Control of the Phase Angle and Magnitude of the Output Voltage,” IEEE Transactions on Industrial Electronics, Vol. 54, No. 5, pp. 2797-2812, October 2007.
    [52] M. Qiu, P. K. Jain, and H. Zhang, “Dynamic Performance of an APWM Resonant Inverter for High Frequency AC Power Distribution System,” IEEE Transactions on Power Electronics, Vol. 21, No. 6, pp. 1556-1563, November 2006.
    [53] LM311 Datasheet, Texas Instruments, 2012.
    [54] IR2110 Data Sheet, International Rectifier, 2005.
    [55] TMS320F28335 Data Manual, Texas Instruments, 2012.

    無法下載圖示 校內:2021-07-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE