| 研究生: |
張萬榮 Chang, Wang-rong |
|---|---|
| 論文名稱: |
新世代光纖網路系統架構與通訊協定之設計與研究 Research and Design of System Architectures and Communication Protocols for Next-Generation Optical Networks |
| 指導教授: |
林輝堂
Lin, Hui-Tang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 都會網路 、被動式光學網路 、全光學 、光分波多工 、光網路 |
| 外文關鍵詞: | PON, Photonic networks, Metro networks, All-optical, WDM |
| 相關次數: | 點閱:173 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主要目的為在以光接取網路(Optical Access Networks, 簡稱OANs)經由光都會網路(Optical Metro Networks, 簡稱OMNs)再到光核心網路(Optical Core Networks, 簡稱OCNs)所形成的新世代光纖網路中探討對於網路傳輸影響甚鉅的相關議題。
在與末端使用者(end users)距離最接近的光接取網路中,當光網路單元(Optical Network Units, 簡稱ONUs)的數目不斷的增加而導致網路對傳輸頻寬的需求激增時,目前所廣泛使用的單一傳輸通道乙太被動式光纖網路(Ethernet Passive Optical Network, 簡稱EPON)便無法滿足這些新增傳輸頻寬的需求。為了改善上述的問題,本論文提出一個新式分波多工(Wavelength Division Multiplexing, 簡稱WDM)乙太被動式光纖網路架構。該網路架構除了提升光網路單至中央機房(central office)間的傳輸頻寬以滿足傳輸的需求外,也可使得末端使用者在區域網路中具有直接相互傳輸資料的能力。此外,本論文也研究與設計配套的動態頻寬分配技術與品質服務機制。再者,本論文針對此架構建立數學分析模型,分析平均等待佇列長度與平均封包等待時間等與乙太被動式光纖網路效能相關的數據參數。此模型所推算的系統效能也與模擬實驗結果互相印證。結果顯示兩者所得到的數據非常吻合。
針對光都會網路方面,由於目前廣泛使用的同步光纖環狀網路(Optical NETwork/Synchronous Digital Hierarchy, 簡稱SONET)在傳輸非同步資料與叢集(burst)資料較無效率,因而在都會網路中產生所謂的都會缺口(metro gap)問題。為了解決都會缺口問題,本論文在光分封交換(Optical Optical Packet Switching, 簡稱OPS)與光叢集交換(Optical Burst Switching, 簡稱OBS)的封包交換技術上分別提出了一個全光學都會網路的架構。由於所提出的光分封交換都會環為一個雙向環狀網路,因此相較於單向環狀網路其具有較好的網路延展性,較高的網路效能與當網路節點或光纖故障時可提供較佳的錯誤容忍性(fault tolerance)等多項優點。再者,本論文所提出的光叢集交換都會環狀網路除了可確認在傳輸叢集資料時不會發生資料碰撞的情況,亦可同時保有傳統光叢集交換網路具有多樣資料傳輸的優勢。本論文也針對兩個環狀網路系統,各自提出了相關的介質存取控制(Medium Access Control, 簡稱MAC)機制。此機制能使得兩個環狀網路皆具有解決傳輸通道碰撞問題、保證存取公平性、支援不同的網路服務、與確保卓越網路資源使用率的能力。
最後,由於光叢集交換相對於光分封交換所需求技術層面的複雜度較低,因此光叢集交換衍然成為一個在光核心網路方面的新興光資料交換技術。在目前的光叢集交換核心網路中,大部分的研究皆把焦點放在如何解決叢集資料於傳輸時發生碰撞的議題上。本論文則將光核心網路的研究聚焦於評估叢集標頭封包(Burst Header Packets, 簡稱BHPs)在發生碰撞時對傳輸層(transport layer)應用傳輸效能方面的影響。有鑒於此,本論文提出一套包含硬體架構與搭配之演算法的機制以解決叢集標頭封包碰撞解造成網路效能下降的問題。本論文所提出的機制將碰撞的叢集標頭封包暫存在緩衝佇列中並補償暫存於緩衝佇列的叢集標頭封包與其相對應叢集資料之間的間隔時間(offset time)。因此,叢集標頭封包碰撞的問題可以全然解決,並將叢集資料遺失率降至最低以達到提升整體網路效能的目的。
This dissertation is aimed at addressing critical issues in the next-generation optical networks from Optical Access Networks (OANs), through Optical Metro Networks (OMNs), and then to Optical Core Networks (OCNs).
In OANs, the current single-channel Ethernet Passive Optical Network (EPON) architecture is no longer adequate when the traffic demands imposed on an access network increase greatly as the number of Optical Network Units (ONUs) increases. In order to address this issue, this dissertation presents a novel multiple channel EPON system (i.e., a WDM EPON network). The proposed WDM EPON architecture not only resolves the insufficient bandwidth issue by dramatically increasing the transmission capability between OLT and ONUs, but also facilitates a truly-shared LAN capability amongst the end users by allowing ONU-ONU communication. An associated dynamic bandwidth allocation scheme and a QoS provisioning mechanism are also investigated. Furthermore, this study constructs an analytical model for evaluating the mean packet delay and mean queue length. The analytical results derived using this model are found to be in good agreement with those obtained from computer simulations.
In OMNs, current Synchronous Optical NETwork/Synchronous Digital Hierarchy (SONET/SDH) ring networks have an efficiency issue, called “metro gap”, in terms of supporting asymmetric traffic and burst. This dissertation proposes two all-optical metro ring architectures based upon Optical Packet Switching (OPS) and Optical Burst Switching (OBS) approaches, respectively, to overcome the metro gap problem. The proposed OPS metro ring is a dual-ring network which has several key advantages compared to their single-ring counterparts, including a greater scalability, a higher throughput, and an enhanced fault tolerance in terms of node/fiber failures. On the other hand, the proposed OBS metro ring architecture ensures a collision-free transmission of data bursts, while retaining the advantage of the statistical multiplexing provided by conventional OBS networks. In both ring networks, the corresponding Medium Access Control (MAC) mechanisms have been also designed and investigated. As a result, the two metro rings are both capable of resolving the channel collision problem, guaranteeing access fairness under various traffic patterns, supporting differentiated services, and thereby ensuring excellent network resource utilization.
Finally, for OCNs, currently OBS is considered as a potential switching paradigm due to its less requirement of for complex hardware technology than OPS. Traditionally, in OBS core networks, research has been focusing on resolving collision issues of data bursts. This study has taken a look at how the collisions of Burst Header Packets (BHPs) impact the transmission performance, especially for the goodput of the transport layer applications. A BHP contention resolution mechanism has been proposed to resolve the BHP collision problem. In the proposed scheme, the collided BHP is temporarily stored in the electrical buffer and the offset time between the buffered BHP and its corresponding data burst is compensated. Hence, the BHP collision problems are entirely resolved, thereby minimizing the burst loss rate and enhancing the network performance.
[1] G. Kramer et al., “Ethernet Passive Optical Network (EPON): Building a Next-Generation Optical Access Network,” IEEE commun. Mag., vol. 40, pp. 66-73, Feb. 2002.
[2] http://www.fsanweb.org
[3] S. R. Sherif et al., “A Novel Decentralized Ethernet-Based PON Access Architecture for Provisioning Differentiated QoS,” Journal of Lightwave Technology, vol. 22, no. 11, pp. 2483-2497, Nov. 2004.
[4] http://www.ieeecommunities.org/epon
[5] http://www.efmalliance.org
[6] http://www.ieee802.org/3/efm
[7] Michael P. McGarry et al., “Ethernet PONs: A Survey of Dynamic Bandwidth Allocation (DBA) Algorithm,” IEEE commun. Mag., pp. S8-S15, Aug. 2004.
[8] G. Kramer et al., “IPACT: A Dynamic Protocol for an Ethernet PON (EPON),” IEEE commun. Mag., pp. 74-80, Feb. 2002.
[9] C. M. Assi et al., “Dynamic Bandwidth Allocation for Quality-of-Service Over Ethernet PONs,” IEEE JSAC, vol. 21, no. 9, pp. 1467-1477, Nov. 2003.
[10] J. Xiw et al., “A Dynamic Bandwidth Allocation Scheme for Differentiated Services in EPONs,” IEEE commun. Mag., vol. 42, no. 8, pp. S32-S39, Aug. 2004.
[11] Boehm, R.J., “Progress in standardization of SONET”, Proc. of IEEE LCS, vol. 1, issue 2, pp. 8-16, May 1990.
[12] Martin Herzog et al., “Metropolitan Area Packet-Switched WDM Networks: A Survey on Ring Systems,” IEEE commun. survey, vol. 6, no. 2, pp. 2-20, May 2004.
[13] S. Yao et al., “All-Optical Packet Switching for Metropolitan Area Networks: Opportunities and Challenges,” IEEE Commun. Mag., vol. 39, no. 3, pp. 142–148, Mar. 2001.
[14] D. Stoll et al., “Metropolitan DWDM: A Dynamically Configurable Ring for the KomNet Field Trial in Berlin,” IEEE Commun. Mag., vol. 39, no. 2, pp. 106–13, Feb. 2001.
[15] R. Gaudino et al., “RINGO: A WDM Ring Optical Packet Network Demonstrator,” Proc. 27th European Conf. Optical Commun. (ECOC), vol. 4, pp. 620–21, Oct. 2001.
[16] K. V. Shrikhande et al., “HORNET: A Packet-Over-WDM Multiple Access Metropolitan Area Ring Network,” IEEE JSAC, vol. 18, no. 10, pp. 2004–2016, Oct. 2000.
[17] S. Yao et al., “Advances in Photonic Packet Switching”, IEEE Commun. Mag., vol. 38, pp. 84-94, Feb. 2000.
[18] K. Shrikhande et al., “Experimental Demonstration of An Access Point for HORNET-A Packet-over-WDM Multiple-Access MAN”, IEEE Journal of Lightwave Technology, vol. 18, no. 22, pp. 1709-1717, 2000.
[19] C. S. Jelger et al., “A Simple MAC Protocol for WDM Metropolitan Access Ring Networks”, IEEE Proceeding of GLOBECOM, vol. 3, pp. 1500–1504, 2001.
[20] C. S. Jelger et al., “Photonic Packet WDM Ring Networks Architecture and Performance”, IEEE commun. Mag., vol. 40, no. 11, pp. 110-115, 2002.
[21] Lisong Xu et al., “A Simulation Study of Optical Burst Switching and Access Protocols for WDM Ring Networks”, Computer Networks, vol. 41, pp. 143-160, 2003.
[22] Sunghoon Jung et al., “A New Collision-free Media Access Protocol for Metro OBS Ring Networks”, IEEE Proceeding of ICACT, pp. 20-22, 2006.
[23] Yutaka Arakawa et al., “Performance of Optical Burst Switched WDM Ring Network with TTFR System”, Proceeding of OpNeTec, pp. 95-102, 2004.
[24] Min-Bum Kim et al., “OBS WDM Ring Networks with Tunable Transmitters and Fixed Receivers”, IEEE Proceeding of ICACT, vol. 2, pp. 621-624, 2004.
[25] Fumagalli, A. et al., “A Low-Latency and Bandwidth-Efficient Distributed Optical Burst Switching Architecture for Metro Ring”, IEEE Proceeding of ICC, vol. 2, pp. 1340-1344, 2003.
[26] A. Zapata et al., “Next-Generation 100-Gigabit Metro Ethernet (100GbME) using Multiwavelength Optical Rings”, IEEE Journal of Lightwave Technology, vol. 22, no. 11, pp. 2420-2434, 2004.
[27] I. Chlamtac et al., “Lightpath communications: an approach to high-bandwidth optical WANs”, IEEE Trans. on Commun., vol. 40, pp.1171-1182, July 1992.
[28] D. J. Blumenthal et al., "Photonic Packet Switches: Architectures and Experimental Implementations," Proc. IEEE, vol. 82, pp. 1650–67, Nov. 1994.
[29] Yang Chen et al., “Optical Burst Switching: A New Area in Optical Networking Research,” IEEE Network vol. 18, no. 3, pp. 16-23, 2004.
[30] K. H. Kwong et al., “Dynamic Bandwidth Allocation Algorithm for Differentiated Services over WDM EPONs”, Proc. IEEE ICCS, pp. 116–200, Sept. 2004.
[31] C. Xiao et al., “An Efficient Reservation MAC Protocol with Preallocation for High-Speed WDM Passive Optical Networks”, Proc. IEEE INFOCOM, vol.1, pp. 444-454, Mar. 2005.
[32] McGarry M.P. et al., “WDM Ethernet passive optical networks”, IEEE commun. Mag., vol. 44, pp. 15-22, Feb. 2006.
[33] Wang-Rong Chang et al., “A Novel WDM EPON Architecture with Wavelength Spatial Reuse in High-Speed Access Networks”, Proc. of IEEE ICON’07, pp. 155-160, Nov. 2007.
[34] A. Bononi, “Scaling WDM Slotted Ring Networks”, Proceeding of Info. Sci. Sys., vol. 1, pp. 659, 1998.
[35] Fei. Xue, et. al, “End-to-End Contention Resolution Schemes for an Optical Packet Switching Network with Enhanced Edge Routers”, IEEE J. Lightwave Tech., vol. 21, no. 11, pp. 2595-2604, 2003.
[36] I. Chlamtac et al., “CORD: Contention Resolution by Delay Lines”, IEEE J. Sel. Area Commun., vol. 14, no. 5, pp. 1014-1029, 1996.
[37] R. Ramaswami et al.,”, IEEE/ACM Trans. Netw., vol. 3, no. 5, pp. 489-500, 1995.
[38] A. Bononi et al., “Analysis of Hot-Potato Optical Networks with Wavelength Conversion”, J. Lightwave Tech., vol. 17, no. 4, pp. 525-534, 1999.
[39] V. M. Vokkarane et al., “Burst Segmentation: An Approach for Reducing Packet Loss in Optical Burst Switched Networks”, Proceeding of IEEE ICC, vol. 5, pp. 2673-2677, 2002.
[40] M. Maier et al., “The Arrayed-Waveguide Grating-Based Single-Hop WDM Network: An Architecture for Efficient Multicasting,” IEEE J. Select. Areas in Commun., vol. 21, no. 9, pp. 1414–1432, Nov. 2003.
[41] S. M. Gemelos et al., “WDM Metropolitan Area Network Based on CSMA/CA Packet Switching”, IEEE Photonics Technology Letters, vol. 11. no. 11, pp. 1512–1514, 1999.
[42] K. Bengi et al., “Efficient QoS Support in a Slotted Multihop WDM Metro Ring”, IEEE J. Sel. Area Commun., vol. 20, no. 1, pp. 216–227, 2002.
[43] K. Bengi et al., “QoS Support and Fairness Control in a Slotted Packet–Switched WDM Metro Ring Network”, IEEE Proceeding of GLOBECOM, vol. 3 pp. 1494–1499, 2001.
[44] H. Ohnishi et al., “ATM Ring Protocol and Performance”, IEEE Proceeding of ICC, no. 1, pp. 394-398, 1989.
[45] Jun Zheng et al., “Media Access Control for Ethernet Passive Optical Networks: An Overview,” IEEE commun. Mag., pp. 145-150, Feb. 2005.
[46] H. Shimonishi et al., “Dynamic Fair Bandwidth Allocation for Diffserv Classes,” Proc. IEEE ICC, vol. 4, pp. 2348–2352, Apr.–May 2002.
[47] S. Blake et al., “An architecture for differentiated services,” IETF, RCF 2475, Tech. Rep., Dec. 1998.
[48] C. M. Arri et al., "Dynamic Bandwidth Allocation for Quality-of-Service over Ethernet PONS,' IEEE IEEE J. Select. Areas in Commun., vol. 21, no. 9, pp. 1467-77, Nov. 2003.
[49] G. Kramer et al., “Supporting Differentiated Classes of Service in EPON-based Access Network,” J. Opt. Networking, pp. 280–298, 2002.
[50] A. Demers et al., “Analysis and Simulation of a Fair Queueing Algorithm,” Proc. of SIGCOMM, vol. 19, no. 4, pp. 1-12, Sept. 1989.
[51] S. Bhatia et al., “Analysis of the gated IPACT scheme for EPONs,” in Proc. of IEEE ICC, vol. 6, pp. 2693–2698, June 2006.
[52] Chul Geun Park et al., “Performance Analysis of DBA Scheme with Interleaved Polling Algorithm in an Ethernet PON,” in Proc. of IEEE ISCC, vol. 2, pp. 792-797, June 2004.
[53] Bart Lannoo et al., “Analytical Model for the IPACT Dynamic Bandwidth Allocation Algorithm for EPONs,” J. Opt. Networking, vol.6, no. 6 pp. 677–688, June 2007.
[54] C. S. Jelger et al., “A Slotted MAC Protocol for Efficient Bandwidth Utilization in WDM Metropolitan Access Ring Networks”, IEEE J. Sel. Area Commun., vol. 21, no. 10, pp. 1295-1305, 2003.
[55] A. Richter et al., “Germany-wide DWDM Field Trial: Transparent Connection of a Long Haul Link and a Multiclient Metro Network”, IEEE Proceeding of OFC, vol. 1, pp. ML3-1 – ML3-3, 2001.
[56] D. Stoll et al., “Metropolitan DWDM: A Dynamically Configurable Ring for the KomNet Field Trial in Berlin”, IEEE commun. Mag., vol. 39, no. 2, pp. 106-113, 2001.
[57] I. M. White et al., “Design of a Control–Channel–Based Media–Access–Control Protocol for HORNET”, Journal of Optical Networking, vol. 12, pp. 460–473, 2002.
[58] M. Ajmone et al., “All–Optical WDM Multi–Rings with Differentiated QoS”, IEEE commun. Mag., vol. 37, no. 2, pp. 58–66, 1999.
[59] H. Ohnishi et al., “ATM Ring Protocol and Performance”, IEEE Proceeding of ICC, no. 1, pp. 394-398, 1989.
[60] M. Yoo et al., “Just-Enough-Time (JET): A High Speed Protocol for Bursty Traffic in Optical Networks”, IEEE Proceeding of Conf. Tech. Global Info. Infrastructure, pp. 26-27, 1997.
[61] M. J. Spencer et al., “WRAP: A Medium Access Control Protocol for Wavelength-Routed Passive Optical Networks”, IEEE Journal of Lightwave Technology, vol. 18, no. 12, pp. 1657-1676, 2000.
[62] X. Yu et al., “Study of Traffic Statistics of Assembled Burst Traffic in Optical Burst Switched Networks”, Proceeding of IEEE Opticomm, pp. 149-159, 2002.
[63] A. Ge, F. et al., “On Optical Burst Switching and Self-Similar Traffic”, IEEE Commun. Lett., vol. 4, no. 3, pp. 98-100, 2000.
[64] Ross, F.E., “Fiber Distributed Data Interface, An Overview”, IEEE Proceeding of LCN, pp. 6-11, 1990.
[65] M. Ajmone Marsan et al., “SR3: A Bandwidth–Reservation MAC Protocol for Multimedia Applications over All–Optical WDM Multi–Rings”, IEEE Proceeding of INFOCOM, vol. 2, pp. 761–768, 1997.
[66] Wang-Rong Chang et al., “Integration of Differentiated Services with Fairness Control on a WDM Metro Ring”, Photonic Network Communications, vol. 13, no. 2, pp. 167-181, 2007.
[67] Wang-Rong Chang et al., “FARE: An Efficient Integrated MAC Protocol for Differentiated Services in WDM Metro Rings”, Computer Communications, vol. 30, pp. 1315-1330, 2007.
[68] W. Fischer, K. Meier-Hellstern, The Markov-modulated Poisson Process (MMPP) cookbook, Performance Evaluation, vol. 18, pp. 149-171, 1992.
[69] P. Gambini et al., “Transparent optical packet switching: Network architecture and demonstrators in the KEOPS project”, IEEE J. Select. Areas Commun., vol. 16, no. 7, pp. 1245–1259, 1998.
[70] Y. Xiong et al., “Control Architecture in Optical Burst-Switched WDM Networks”, IEEE J. Sel. Area Commun., vol. 18, no. 10, pp. 1838-1851, 2000.
[71] S. L. Danielsen et al., “WDM Packet Switch Architectures and Analysis of the Influence of Tunable Wavelength Converters on the Performance”, IEEE/OSA J. Lightwave Tech., vol. 15, no. 2, pp. 219-227, 1997.
[72] M. Yoo et al., “QoS Performance of Optical Burst Switching in IP-Over-WDM Networks”, IEEE J. Sel. Area Commun., vol. 18, no. 10, pp. 2062-6071, 2000.
[73] C. Qiao et al., “Optical Burst Switching (OBS) – A New Paradigm for an Optical Internet”, Journal of High Speed Networks, vol. 8, no. 1, pp. 69-84, 1999.
[74] M. Yoo et al., “Optical Burst Switching for Service Differentiation in the Next-Generation Optical Internet”, IEEE commun. Mag., vol. 39, no. 2 pp. 98-104, 2001.
[75] M. Yoo et al., “Supporting Multiple Classes of Services in IP over WDM Network”, Proceeding of IEEE GLOBECOM, vol. 1b, pp. 1023-1027, 1999.
[76] M. Yoo et al., “The Effect of Limited Fiber Delay Lines on QoS Performance of Optical Burst Switched WDM Networks”, Proceeding of IEEE ICC, vol. 2, pp. 974-979, 2000.
[77] A. H. Zaim et al., “The JumpStart Just-In-Time Signaling Protocol: A Formal Description using EFSM”, Opt. Eng., vol. 42, no. 2 pp. 568-585, 2003.
[78] I. Baldine et al., “Jumpstart: A Just-In-Time Signaling Architecture for WDM Burst-Switched Networks”, IEEE commun. Mag., vol. 40, no. 2, pp. 82-89, 2002.
[79] OIRC OBS-ns home. http://wine.icu.ac.kr/~obsns/
[80] X. Yu et al., “Performance Evaluation of TCP Implementations in OBS Networks”, Technical Report 2003-13, the State University of New York at Buffalo, 2003.
[81] A. Detti et al., “Impact of Segments Aggregation on TCP Reno Flows in Optical Burst Switching Networks”, Proceeding of IEEE INFOCOM, vol. 3 pp. 1803-1812, 2002.
[82] Abdallah Shami et al., “QoS Control Schemes for Two-Stage Ethernet Passive Optical Access Networks,” IEEE J. Sel. Area Commun., vol. 23, no. 8, pp. 1467-1478, Aug. 2005.
[83] Yu-Li Hsueh et al., “A Highly Flexible and Efficient Passive Optical Network Employing Dynamic Wavelength Allocation,” IEEE/OSA J. Lightwave Tech., vol. 23, no. 1, pp. 277-286, Jan. 2005.
[84] R. C. Durst et al., "TCP extensions for space communications", ACM MOBICOM, vol.3, pp.289-403, Nov. 1996.
[85] S. Floyd, “HighSpeed TCP for Large Congestion Windows”, RFC3649, 2003
[86] D. X. Wei et al., “FAST TCP: Motivation, Architecture, Algorithms, Performance”, IEEE/ACM Transactions on Networking (TON), vol. 14, pp. 1246-1259, 2006