簡易檢索 / 詳目顯示

研究生: 賴彥伯
Lai, Yen-Po
論文名稱: 利用永久散射體雷達差分干涉法與大地測量技術監測台灣東部縱谷斷層南段近地表變形行為
Shallow Creep Along the Southern Longitudinal Valley Fault in Eastern Taiwan Using PSInSAR and Geodetic Approaches
指導教授: 景國恩
Ching, Kuo-En
學位類別: 碩士
Master
系所名稱: 工學院 - 自然災害減災及管理國際碩士學位學程
International Master Program on Natural Hazards Mitigation and Management
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 159
中文關鍵詞: 瞬時鎖定行為潛移斷層全測站PSInSARGPS
外文關鍵詞: Transient locked event, Creeping fault, PSInSAR, GPS, Total station
相關次數: 點閱:82下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究整合許多近斷層測地資料,包含10個移動式GPS測站資料已及全測站量測資料。而大範圍的觀測資料則包含22個連續式GPS資料以及永久散射體雷達差分干涉影像 (PSInSAR)。利用這些資料去分析縱谷斷層南段地表淺部伴隨時間、空間的運動行為。縱谷斷層南段包含了廣為人知的池上斷層,此斷層在震間時期有明顯的近地表斷層潛移行為。本研究的GPS坐標每日解是依據ITRF2008框架下利用Bernese軟體解算得到。而透過擬合解算得到的GPS時間序列及速度場是約制位在澎湖白沙的S01R測站。GPS連續站的水平速度場反應出斷層深部的穩定移動速度為每年45.3至84.4毫米。利用StaMPS軟體計算2007到2010年的PSInSAR資料,視衛星方向(line-of-sight) 的速度顯示出部分區域有高達每年25毫米的近地表斷層潛移活動。PSInSAR資料更顯示出延著斷層走向的跨斷層速度落差和斷層潛移區的寬度。更進一步分析出破裂至地表的潛移行為和未破裂至地表的淺部潛移行為。這些特性指出池上斷層的潛移行為並非伴隨斷層走向一成不變。然而,自2012至2016年位於台東電光的近斷層移動式GPS (每站30公尺間距) 速度場,顯示出池上斷層南段幾乎沒有跨斷層的速度落差 (每年1到2毫米)。相同時間跨距的全測站資料 (每點30公分間距)也如移動式GPS顯現出趨近於鎖定的跨斷層活動 (每年1到3毫米)。換句話說,池上斷層淺部在台東電光區域在2007到2010年表現出破裂至地表的斷層潛移行為,而自2012到2016此區域的池上斷層則趨近於鎖定。因為此斷層鎖定行為持續了4年也並非季節性訊號,池上斷層南段瞬時鎖定行為可能被其他周圍的地震觸發,但造成斷層瞬時鎖定行為的原因還有待研究。除此之外,在2003年規模6.8的成功地震發生之前,池上斷層北段的潛變儀監測到跨斷層潛移速度驟減的行為。所以位於池上斷層南段的瞬時鎖定行為可能是發生地震事件的前兆之一。

    I integrate the near-fault geodetic measurements from 10 campaign-mode GPS stations, total station measurements, and 22 far-field continuous GPS stations with PSInSAR data for recognizing the spatiotemporal variation of the kinematics on the shallow part of the southern segment of the Longitudinal Valley Fault (LVF) which is also known as the Chihshang fault in SE Taiwan that has been considered as interseismic creep near the surface. The GPS coordinate daily solutions were calculated using the software Bernese v.5.0 under the ITRF2008. The horizontal velocities estimated from coordinate time series using least squares method are relative to the station S01R in the Chinese continental margin. The continuous GPS horizontal velocity pattern reflects the fault kinematics at deep part of the fault is stably moving between 84.4 mm/yr and 45.3 mm/yr. The PSInSAR line-of-sight velocities from 2007 to 2010 evaluated by StaMPS show a localized shortening rate of up to ∼25 mm/yr across the LVF, consistent with the shallow creep reaching to the surface. My results demonstrate the along strike cross-fault velocity offset and the width of the shear zone, showing the along strike variation with both surface creep zone and shallow creep zone. These variations indicate that the creeping behavior is certainly not uniform in the southern segment of the LVF. However, from the 2012-2016 near-fault campaign-mode GPS velocity (∼30-meter station spacing) at Dianguang region, almost no velocity difference (1-2 mm/yr) is observed across this segment of the Chihshang fault. The cross-fault velocities (1-3 mm/yr) derived from the total station survey (∼30-centimeter point spacing) in the same region during 2012-2016 are also compatible with the campaign-mode GPS velocity. In other words, the shallow part of this Chihshang fault segment at Dianguang region was creeping during 2007-2010 and is locked or creeping in a very slow rate between 2012 and 2016. Because this locked behavior is continued over four years and is not a seasonal signal, a transient locked event at the creeping fault is therefore proposed in this study and it may be triggered to release energy aseismically by other earthquake. However, the mechanism of this behavior is still unclear so far. In addition, a slow-down creeping rate has been ever detected at the northern Chihshang fault before the 2003 Mw 6.8 Chengkung earthquake. The transient locked event proposed in this study might also be a precursor of the future seismic hazard at the southern Chihshang fault in Taiwan.

    Contents 摘要 I Abstract II Acknowledgments III Contents IV List of Tables VI List of Figures VII 1. Introduction 1 2. Tectonic Background 4 2.1 Geology and Tectonic Structures 4 2.2 Seismicity 6 3. Data Collection and Processing 9 3.1 GPS Data Acquisition and Processing 9 3.1.1 Continuous GPS Data Acquisition 9 3.1.2 Campaign-mode GPS Data Acquisition 10 3.1.3 GPS Data Processing 12 3.1.4 Velocity Calculation 13 3.2 InSAR Processing and SAR Image Acquisition 14 3.2.1 PSInSAR Processing 14 3.2.2 SAR Image Acquisition 17 3.2.3 Interferogrametric Processing 20 3.2.4 Phase Stability Estimation 23 3.2.5 PS Selection 25 3.2.6 Phase Unwrapping and Displacement Estimation 26 3.3 Total Station Data Acquisition and Processing 28 3.3.1 Total Station Data Acquisition 28 3.3.2 Total Station Data Processing 30 3.3.3 Total Station Observation Errors Analysis 31 3.3.4 Velocity Calculation 34 4. Surface Velocity Field 35 4.1 Horizontal Velocity Field 35 4.2 Vertical Velocity Field 35 4.3 LOS Velocity Field 40 4.4 LOS Velocity Profiles 46 4.5 Total Station Displacement Field 53 4.6 Total Station Velocity Field 61 5. Discussion 62 5.1 Along Strike Creep Variation of the Southern LVF 62 5.2 Temporary Lock of the Chihshang Fault at the Dianguang Region 65 6. Conclusions 67 7. References 68 List of Tables Table 1: ALOS-1 images acquisition table... 19 Table 2: STD table of point 1, 5 and 362 33 Table 3: STD table of point 367, 751 and 756 33 Table 4: STD table of point TK03, TK04 and TK08 34 Appendix Appendix 1: Continuous GPS velocity time series 71 Appendix 2: Distributions of total station network 75 Appendix 3: Total station velocity time series 78

    Angelier, J., H. T. Chu, and J. C. Lee (1997), Shear concentration in a collision zone: kinematics of the active Chihshang Fault, Longitudinal Valley, eastern Taiwan, Tectonophysics, 274, 117-144.
    Ambraseys, N. N. (1970), Some characteristic features of the Anatolian fault zone, Tectonophysics, 9, 143-165, doi:10.1016/0040-1951(70)90014-4.
    Barrier, E., and C. Muller (1984), New observations and discussion on the origin and age of the Lichi Mélange. In: Memoir of the Geological Society of China, vol. 6 303-326.
    Burford, R. O., and P. W. Harsh (1980), Slip on the San Andreas fault in central California from alinement array surveys, Bulletin of Seismological Society of America, 79, 1233-1261.
    Chai, B. H. T. (1972), Structure and tectonic evolution of Taiwan: American Journal of Science, v. 272, p. 389–422.
    Champenois, J., B. Fruneau, E. Pathier, B. Deffontaines, K. C. Lin, and J. C. Hu (2012), Monitoring of active tectonic deformations in the Longitudinal Valley (eastern Taiwan) using persistent scatterer InSAR method with ALOS PALSAR data, Earth and Planetary Science Letters, 337-338, 144-155.
    Chang, C. P., J. Angelier, C. Y. Huang, and C. S. Liu (2001), Structural evolution and significance of a mélange in a collision belt: the Lichi Mélange and the Taiwan arc–continent collision. Geological Magazine 138, 633–651.
    Chang, C. P., T. Y. Chang, J. Angelier, H. Kao, J. C. Lee, and S. B. Yu (2003), Strain and stress field in Taiwan oblique convergent system: Constraints from GPS observation and tectonic data, Earth Planet. Sci. Lett., 214, 115–127, doi:10.1016/S0012-821X(03)00360-1.
    Chang, C. P., J. Y. Yen, A. Hooper, F. M. Chou, Y. A. Chen, C. S. Hou, W. C. Hung, and M. S. Lin (2010), Monitoring of Surface Deformation in Northern Taiwan Using DInSAR and PSInSAR Techniques. Terrestrial, Atmospheric and Oceanic Sciences, 21(3), 447-461.
    Chen, W. S. (1988), Tectonic Evolution of Sedimentary Basins in Coastal Range, Taiwan. Ph. D. thesis, National Taiwan University, Taipei, 304pp (in Chinese).
    Cheng, S. N., Y. T. Yeh., and M. D. Yu (1996), The 1951 Taitung earthquake in Taiwan. J. Geol. Soc. China 39, 267–285.
    Ching, K. E., M. L. Hsieh, K. M. Johnson, K. H. Chen, R. J. Rau, and M. Yang (2011), Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000-2008, Journal of Geophysical Research, 116, B08406, doi:10.1029/2011JB008242.
    Ching, K. E., R. J. Rau, and Y. Zeng (2007), Coseismic source model of the 2003 Mw 6.8 Chengkung earthquake, Taiwan, determined from GPS measurements, Journal of Geophysical Research, 112, B06422, doi:10.1029/2006JB004439.
    Chung, L. H., Y. G. Chen, Y. M. Wu, J. B. H. Shyu, Y. T. Kuo, and Y. N. N. Lin (2008), Seismogenic faults along the major suture of the plate boundary deduced by dislocation modeling of coseismic displacements of the 1951 M7.3 Hualien-Taitung earthquake sequence in eastern Taiwan, Earth Planet. Sci. Lett., 269, 416–426, doi:10.1016/j.epsl.2008.02.035.
    Chuang, R. Y., M. M. Miller, Y. G. Chen, H. Y. Chen, J. B. H. Shyu, S. B. Yu, C. M. Rubin, K. Sieh, and L. H. Chung (2012), Interseismic deformation and earthquake hazard along the southernmost Longitudinal Valley fault, eastern Taiwan, Bulletin of the Seismological Society of America, 102, 1569-1582.
    Cloude, S. R., and K. P. Papathanassiou (1998), Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sensing 36 (5), 1551–1565.
    Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (2007), Bernese GPS Software Version 5.0. Bern, Switzerland: Astron. Inst., University of Bern, 612 pp.
    Ferretti, A., C. Prati, and F. Rocca (2000), Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. On Geosci. and Remote Sensing, 38 (5), 2202–2212.
    Ferretti, A., C. Prati, and F. Rocca (2001), Permanent scatterers in SAR interferometry. Geoscience and Remote Sensing, IEEE Transactions on, 39(1), 8-20.
    Ge, L., A. H. M. Ng, H. Wang, and, C. Rizos (2009), Crustal deformation in Australia measured by satellite radar interferometry using ALOS/PALSAR imagery. J. Appl. Geod. 3 (1), 47–53.
    Goulty, N. R., R. O. Burford, C. R. Allen, R. Gilman, C. E. Johnson, and R. P. Keller (1978), Large creep events on the Imperial fault, California, Bulletin of the Seismological Society of America, 68, 517-521.
    Ho, C.S. (1988), An Introduction to the Geology of Taiwan, Explanatory Text of the Geologic Map of Taiwan, second ed. Central Geological Survey, Ministry of Economic Affairs, Taipei, 192pp.
    Hooper, A., H. Zebker, P. Segall, and B. Kampes (2004), A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers, Geophys. Res. Lett., 31, L23611, doi:10.1029/2004GL021737.
    Hooper, A., P. Segall, and H. Zebker (2007), Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth (1978–2012), 112(B7). doi: 10.1029/2006JB004763
    Hooper, A. (2008), A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches, Geophys. Res. Lett., 35(16), L16302, doi:10.1029/2008GL034654.
    Hsu, L., and R. Bürgmann (2006), Surface creep along the Longitudinal Valley fault, Taiwan from InSAR measurements, Geophysical Research Letters, 33, L06312, doi:10.1029/2005GL024624.
    Hsu, T. L. (1962), Recent faulting in the Longitudinal Valley of eastern Taiwan. Memoir Geol. Soc. China 1, 95–102.
    Hsu, Y. J., M. Simons, S. B. Yu, L. C. Kuo, and H. Y. Chen (2003), A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt, Earth and Planetary Science Letters, 211, 287-294.
    Hsu, Y. J., S. B. Yu, and H. Y. Chen (2009), Coseismic and postseismic deformation associated with the 2003 Chengkung, Taiwan, earthquake, Geophysical Journal International, 176, 420-430, doi:10.1111/j.1365-246X.2008.04009.x.
    Hu, J. C., L. W. Cheng, H. Y. Chen, Y. M. Wu, J. C. Lee, Y. G. Chen, K. C. Lin, R. J. Rau, H. Kuochen, H. H. Chen, S. B. Yu, and J. Angelier (2007), Coseismic deformation revealed by inversion of strong motion and GPS data: The 2003 Chengkung earthquake in eastern Taiwan, Geophysical Journal International, 169, 667-674.
    Huang, W.‐J., K. M. Johnson, J. Fukuda, and S.‐B. Yu (2010), Insights into
    active tectonics of eastern Taiwan from analyses of geodetic and geologic
    data, J. Geophys. Res., 115, B03413, doi:10.1029/2008JB006208.
    Huang, W.‐J., K. M. Johnson, J. Fukuda, and S.‐B. Yu (2010), Insights into
    active tectonics of eastern Taiwan from analyses of geodetic and geologic
    data, J. Geophys. Res., 115, B03413, doi:10.1029/2008JB006208.
    Huang, W. J., K. M. Johnson, J. Fukuda, and S. B. Yu (2010), Insights intoactive tectonics of eastern Taiwan from analyses of geodetic and geologicdata, J. Geophys. Res., 115, B03413, doi:10.1029/2008JB006208.
    Lallemand, S., Y. Font, H. Bijwaard, and H. Kao (2001), New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications, Tectonophysics, 335, 229–253, doi:10.1016/S0040-1951(01)00071-3.
    Lee, J. C., J. Angelier, H. T. Chu, J. C. Hu, and F. S. Jeng (2001), Continuous monitoring of an active fault in a plate suture zone: a creepmeter study of the Chihshang Fault, eastern Taiwan, Tectonophysics, 333, 219-240.
    Lee, J. C., J. Angelier, H. T. Chu, J. C. Hu, F. S. Jeng, and R. J. Rau (2003), Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001, Journal of Geophysical Research 108, 2528, doi:10.1029/2003JB002394.
    Lee, Y. H., G. T. Chen, R. J. Rau, and K. E. Ching (2008), Coseismic displacement and tectonic implication of 1951 Longitudinal Valley earthquake sequence, eastern Taiwan, J. Geophys. Res., 113, B04305, doi:10.1029/2007JB005180.
    Loevenbruck, A., R. Cattin, X. Le Pichon, M. L. Courty, and S. B. Yu (2001), Seismic cycle in Taiwan derived from GPS measurements, Earth and Planetary Science, 333, 57-64, doi:10.1016/S1251-8050(01)01567-1.
    Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute (1993), The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433), 138-142.
    Page, B. M., and J. Suppe (1981), The Pliocene Lichi Melange of Taiwan: Its plate-tectonic and olistostromal origin: American Journal of Science, v. 281, p. 193-227.
    Pathier, E., B. Fruneau, B. Deffontaines, J. Angelier, C. P. Chang, S. B. Yu, and C. T. Lee (2003), Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data. Earth and Planetary Science Letters, 212(1), 73-88.
    Peyret, M., S. Dominguez, R. Cattin, J. Champenois, M. Leroy, and A. Zajac (2011), Present-day interseismic surface deformation along the Longitudinal Valley, eastern Taiwan, from a PS-InSAR analysis of the ERS satellite archives, Journal of Geophysical Research, 116, doi:10.1029/2010JB007898.
    Saastamoinen, I. I. (1973), Contribution to the theory of atmospheric refraction, Bulletin Géodésique, 107, 13-34.
    Schulz, S. S., G. M. Mavko, R. O. Burford, and W. D. Stuart (1982), Long-term fault creep observation in central California, Journal of Geophysical Research, 87, 6977-6982.
    Shyu, J. B. H., K. Sieh, Y. G. Chen, and C. S. Liu (2005), Neotectonic architecture of Taiwan and its implications for future large earthquakes, Journal of Geophysical Research, 110, doi:10.1029/2004JB003251.
    Shyu, J. B. H., L. H. Chung, Y. G. Chen, J. C. Lee, and K. Sieh (2007), Re-evaluation of the surface ruptures of the November 1951 earthquake series in eastern Taiwan, and its neotectonic implications. Journal of Asian Earth Sciences, 31(3), 317-331.
    Shyu, J. B. H., K. Sieh, Y. G. Chen, R. Y. Chuang, Y. Wang, and L. H. Chung (2008), Geomorphology of the southernmost Longitudinal Valley Fault: Implications for evolution of the active suture of eastern Taiwan, Tectonics, 27, TC1019, doi:10.1029/2006TC002060.
    Steigenberger, P., M. Rothacher, R. Dietrich, M. Fritsche, A. Rülke, and S. Vey (2006), Reprocessing of a global GPS network, Journal of Geophysical Research, 111(B5), B05402.
    Suppe, J. (1984), Kinematics of arc-continent collision, flipping of subduction and back-arc spreading near Taiwan. Memor. Geol. Soc. China 6, 21–33.
    Teng, L. S., W. S. Chen, Y. Wang, S. R. Song, and H. J. Lo (1988), Toward a comprehensive stratigraphic system of the Coastal Range, eastern Taiwan, Acta Geol. Taiwanica, 26, 19–35.
    Teng, L. S. (1990), Geotectonic evolution of late Cenozoic arc continent collision in Taiwan, Tectonophysics, 183, 57–76, doi:10.1016/0040-1951(90)90188-E.
    Thomas, M. Y., J. P. Avouac, J. Champenois, J. C. Lee, and L. C. Kuo (2014), Spatiotemporal evolution of seismic and aseismic slip on the longitudinal valley fault, Taiwan, Journal of Geophysical Research-solid Earth, 119, 5114–5139.
    Vondrak, J., and B. Richter (2004), International Earth Rotation and Reference Systems Service (IERS). J. Geodesy, 77(10-11):585–678.
    Wdowinski S., Y. Bock, J. Zhang, P. Fang, and J. Genrich (1997), Southern California Permanent GPS Geodetic Array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. geophys. Res., 102, 18057–18070.
    Wu, Y. M., Y. G. Chen, T. C. Shin, H. Kuochen, C. S. Hou, J. C. Hu, C. H. Chang, C. F. Wu, and T. L. Teng (2006), Coseismic versus interseismic ground deformations, fault rupture inversion and segmentation revealed by 2003 Mw 6.8 Chengkung earthquake in eastern Taiwan, Geophysical Research Letters, 33, L02312, doi:10.1029/2005GL024711.
    Yu, S. B., and C. C. Liu (1989), Fault creep on the central segment of the Longitudinal Valley fault, eastern Taiwan, Proceedings of the Geological Society of China, 35, 219-230.
    Yu, S. B., G. K. Yu, L. C. Kuo, and C. Lee (1992), Crustal deformation in the southern Longitudinal Valley area, eastern Taiwan, Journal of Geological Society of China, 35, 219-230.
    Yu, S. B., and L. C. Kuo (2001), Present-day crustal motion along the Longitudinal Valley fault, eastern Taiwan, Tectonophysics, 333, 199-217.
    Zebker, H. A., P. A. Rosen, R. M. Goldstein, A. Gabriel, and C. L. Werner (1994b), On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. Journal of Geophysical Research: Solid Earth (1978–2012), 99(B10), 19617-19634.

    無法下載圖示 校內:2018-11-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE