| 研究生: |
曾信賓 Tseng, Shin-Pin |
|---|---|
| 論文名稱: |
架構於陣列波導與光纖光柵之數種光分碼多工編解碼裝置 Several Optical CDMA Spectral Codecs Structured Over Arrayed-Waveguide and Fiber-Bragg Gratings |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 陣列波導光柵 、布雷格光柵 、光分碼多工 |
| 外文關鍵詞: | Fiber Bragg Grating (FBG), Arrayed Waveguide Grating (AWG) Router, Optical Code Division Multiple Accees |
| 相關次數: | 點閱:120 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於光纖分碼多工技術提供有彈性的非同步傳輸技術與高容量通訊的特性,因此,非常適合應用於區域網路的架構下。在頻域振幅編碼的光分碼多工技術中有數種常見的碼型,如M-sequence codes、Hadamard-Walsh codes或是modified quadratic congruence (MQC) codes等等。在本論文中,我們提出頻域振幅編碼的光分碼多工系統,而所提出新型的編解碼裝置分別利用陣列波導光柵以及布雷格光柵來完成。首先提出兩種碼型可利用陣列波導光柵的循環特性來做為編解碼器。由於採用M-sequence codes,因此我們提出的編解碼裝置可以同時編解碼所有使用者的codewords。若使用互補式Hadamard codes,每個使用者僅需要一個陣列波導光柵就可實現互補輸入。接著,我們再提出一種新的頻域編碼的碼型且它僅需要利用少數幾個布雷格光柵串連來完成。
在此系統中,分別採用振幅鍵移及互補鍵移的方式將電信號與便宜的非同調入射光源(LED)做電光調變,然後在經由陣列波導光柵元件或者是布雷格光柵來控制寬頻入射光源的頻域振幅部分,進而達到光頻域振幅編碼的效果。而陣列波導光柵元件會將入射光源在頻域上切割成好幾個波帶chip且依據波長的不同會分佈在不同的陣列波導光柵輸出埠端。由於可利用數個布拉格光柵做為一組濾波器,因此我們可藉由有選擇性的反射方式將寬頻非同調光源在頻域上切成一系列的碼型chip。然而每個波帶chip都有各別的中心波長,這些波長每個都不同且分佈在入射光源的頻寬之中。
因此,在我們所提出這些系統架構,不僅提供消除多使用者干擾(MUI)的能力,且還能減少系統的複雜度獲得一套便宜的光分碼多工系統。
Fiber-optic CDMA techniques provide a flexible solution for asynchronous, high capacity communication, which are the most suitable application in local area networks (LAN). Several code families can be used in the SAC OCDMA systems recently, including maximal-length sequence (M-sequence) codes, Walsh-Hadamard codes, modified quadratic congruence (MQC) codes, and so on. In this thesis, optical code-division multiple-access (OCDMA) systems of spectral amplitude coding (SAC) is presented, which uses the proposed novel optical encoder/decoder based on arrayed-waveguide grating (AWG) routers and fiber Bragg gratings (FBGs). First we propose two SAC CDMA systems adopting the cyclic properties of AWG routers. By adopting the cyclic properties of M-sequence codes over AWG routers, the encoder/decoder pair can encode/decode multiple codewords simultaneously. By using complementary Walsh Hadamard (CWH) code over AWG router, each user only need an AWG router as the encoder to implement complement keying. Next, the new code family is proposed to construct based on a series of FBG for SAC OCDMA system. Due to lower weight of proposed codes, we can construct the encoder/decoder with only a few FBGs. Therefore, it is very easy to implement.
The information signal is employing either on-off keying (OOK) or complement keying with low cost incoherent sources, then AWG router or FBG is used to control the amplitude spectra of broadband incoherent optical sources. AWG routers will spectrally slice incoming broadband optical spectrum into several spectral chips are distributed over the different output ports of AWG router. FBGs are used as filters that will make a series of code chips by method of selectively reflecting to broadband incoherent optical source spectrum with information signal. Then, each wavelength chip has different central wavelength and is distributed over the spectrum of the incoming light source.
These configurations not only preserve the ability of multiple user interference (MUI) cancellation in SAC OCDMA system, but also result in a cheap system with reduced system complexity.
[01]. R. Dixon, “Why spread spectrum?,” IEEE Communications Soc. Mag., vol. 13, pp. 21-25, July 1975.
[02]. R. Scholtz, “The spread spectrum concept,” IEEE Transactions on Communications, vol. 25, no. 8, pp. 748-755, August 1977.
[03]. R. Dixon, Spread Spectrum Systems with Commercial Applications, Wiley- Interscience, New York, 1994.
[04]. M. Sust, “Code division multiple access for commercial communications,” in Review of Radio Science 1992-1994, pp. 155-179, International Union of Radio Science (URSI).
[05]. D. Grosbie, “The new space race: satellite mobile communications,” IEE Review, vol. 39, no. 3, pp. 111-114, May 1993.
[06]. J. A. Salehi, “Code division multiple-access techniques in optical fiber network-Part I: Fundamental principles,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 824-833, August 1989.
[07]. J. A. Salehi and C. A. Brackett, “Code division multiple-access Techniques in optical fiber networks-Part II: Systems performance analysis,” IEEE Transactions on Communications, vol. 37, no. 8, pp. 834-842, August 1989.
[08]. Z. Wei, H. M. H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber bragg-grating-based spectral-amplitude-coding optical CDMA systems,” J. Lightwave Technol., vol. 19, no. 9, pp. 1274-1281, September 2001.
[09]. E. Marom and O. G. Ramer, “Encoding-decoding optical fiber network,” Electron. Lett., vol. 14, no. 3, pp. 48, 1978.
[10]. G. Vannucci, “Combining frequency division multiplexing and code division multiplexing for high capacity optical network,” IEEE Network, vol. 3, no. 2, pp. 21-30, March 1989.
[11]. N. Karafolas and D. Uttamchandani, “Optical fiber code division multiple access networks: a review,” Optical Fiber Technol., vol. 2, no. 17, pp. 149-168, 1996.
[12]. P. Prucnal, M. Santoro and T. Fan, “Spread spectrum fiber optic local area network using optical processing,” IEEE Network, vol. 4, no. 5, pp. 547-554, May 1986.
[13]. W. C. Kwong, P. Perrier and P. R. Prucnal, “Performance comparison of asynchronous and synchronous code-division multiple-access techniques for fiber-optic local area networks,” IEEE Transactions on Communications, vol. 39, no. 11, pp. 1625-1634, Nov. 1991.
[14]. K. P. Jackson, G. Xaio and H. J. Shaw, “Coherent optical fiber delay-line processor,” Electron. Lett., vol. 22, no. 25, pp. 1335, 1986.
[15]. M. E. Marhic, “Trends in optical CDMA,” in Multigigabit Fiber Communications, SPIE Proceedings vol. 1787, pp.80-97, Boston, 1992.
[16]. D. D. Sampson and D. A. Jackson, “Spread spectrum optical fiber network based on pulsed coherent correlation,” Electron. Lett., vol. 26, no. 19, pp. 1550-1552, Sept. 1990.
[17]. R. A. Griffin, D. D. Sampson, and D. A. Jackson, “Optical phase coding for code division multiple access,” IEEE Photon. Technol. Lett., vol. 4, no. 12, pp. 1401-1404, Dec. 1992.
[18]. D. Sampson, R. A. Griffin, and D. A. Jackson, “Photonic CDMA by coherent matched filtering using time-addressed coding in optical ladder networks,” IEEE J. Lightwave Technol., vol. 12, no. 11, pp. 2001-2010, Nov. 1994.
[19]. J. Enriguz-Gabeiras, J. Camany, and R. Fernandez de Caleya, “ Efeect of non ideal and fiber parameters on the performance of an all optical coherent code division multiple access,” in Proceedings of EFOC/LAN’92, pp. 146-151, Paris, June 1992.
[20]. M. Brandt-Pearce and B. Aazhang, “Multiuser detection for optical code division multiple access systems,” IEEE Transactions on Communications, vol. 42, no. 2, pp.1801-1810, Feb./Mar./Apr. 1994.
[21]. D. V. Sarwate and M. B. Pursley, “Crosscorrelation properties of pseudorandom and related sequences,” Proceedings of the IEEE, vol. 68, no. 5, 593-619, May 1980.
[22]. M. E. Marhic, “Coherent optical CDMA networks,” IEEE/OSA J. Lightwave Technol., vol. 11, no. 5/6, 854-863, May./June. 1993.
[23]. J.A. Salehi, A.M. Weiner, and J.P. Heritage, “Coherent ultrashort light pulse code-division multiple-access communication systems,” J. Lightwave Technol., vol. 8, no. 3, pp. 478-491, March 1990.
[24]. D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Letter, vol. 5, no. 4, pp. 479-482, 1993.
[25]. M. Kavehrad and D. Zaccarin, “Optical code- division-multiplexed systems based on spectral encoding of non-coherent sources,” J. Lightwave Technol., vol. 13, no. 3, pp. 534 -545, March 1995.
[26]. J. F. Huang, and D. Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Letter, vol. 12, pp. 1252-1254, Sept. 2000.
[27]. L. Nguyen, B. Aazhang, and J. F. Young, “All-optical CDMA with bipolar codes,” Electron. Letter, vol. 31, no. 17, pp.1469-1470, Aug. 1995.
[28]. E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance enhancement of spectral-amplitude-coding optical CDMA using pulse-position modulation,” IEEE Transactions on Communications, vol. 46, pp. 1176-1185, Sept. 1998.
[29]. H. Fathallah, L. A. Rusch, and S. LaRochelle, “Passive optical fast frequency-hop CDMA communications system,” J. Lightwave Technol., vol. 17, no. 3, pp. 397-405, March 1999.
[30]. K. Yu, J. Shin, and N. Park, “Wavelength-Time spreading optical CDMA system using wavelength multiplexers and mirrored fiber delay lines,” IEEE Photon. Technol. Lett., vol. 12, no. 9, pp. 1278-1280, Sept. 2000.
[31]. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Letter, vol. 24, pp. 385-386, 1998.
[32]. H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Letter, vol. 26, pp. 87-88, 1990.
[33]. C. Dragone, “An N×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon Technol. Letter, vol. 3, pp. 812-815, 1991.
[34]. C. Dragone, C.A. Edwards, and R. C. Kistler, “Integrated optics N×N multiplexer on silicon,” Photon Technol. Letter, vol. 3, pp. 896-899, 1991.
[35]. H. Takahashi, and Y. Hibino, “Arrayed-waveguide grating wavelength multiplexers fabricated with flame hydrolysis deposition,” in Dig. 4th Optoelectronics Conf., IECIE, Japan, 1992, Paper 17C1-3.
[36]. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission characteristics of arrayed-waveguide N×N wavelength multiplexer,” J. Lightwave Technol., vol. 13, no. 3, pp. 447-455, March 1995.
[37]. H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-Waveguide Multiplexer on N×N Optical Interconnection,” J. Lightwave Technol., vol. 14, no. 6, pp. 1097-1105, June 1996.
[38]. L. R. Chen, “Technologies for hybrid wavelength-time optical CDMA transmission”, Conference on Electrical and Computer Engineering, 2001. Canadian, vol. 1, pp. 435-440, 2001.
[39]. D. K. W. Lam, and B. K. Garside, “Characterization of single-mode optical fiber filters,” Applied Optics, vol. 20, pp. 440-445, 1981.
[40]. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Optics Letters, vol. 14, pp. 823-825, 1989.
[41]. E. Pennings, G..-D. Khoe, M. K. Smit, and T. Staring, “Integrated-optic versus micro optic devices for fiber-optic telecommunication systems: A comparison,” IEEE J. Sel. Topics Quantum Electron., vol. 2, pp. 151-164, June 1996.
[42]. M. E. Marhic, “Hierarchic and combinational star couplers,” Optics Letters, vol. 9, pp. 368-370, Aug. 1984.
[43]. D. B. Mortimore, “Wavelength-flattened 8 × 8 single-mode star coupler,” Electron. Lett., vol. 22, pp. 1205-1206, Oct. 1986.
[44]. K. W. Fussgaenger and R. H. Rossberg, “Uni- and bidirectional 4λ×560 Mb/s transmission systems using WDM device based on wavelength-selective fused single-mode fiber couplers, IEEE J. Sel. Areas Commun., vol. 8, pp. 1032-1042, Aug. 1990.
[45]. S. Kim, “Cyclic optical encoders/decoders for compact optical CDMA network,” IEEE Photon. Technol. Lett., vol. 12, pp. 428-430, Apr. 2000.
[46]. X. Zhou, H. M. H. Shalaby, and C. Lu, “Design and performance analysis of a new code for spectral-amplitude-coding optical CDMA systems,” in IEEE 6th Int. Symp. Spread Spectrum Techniques Applications, vol. 1, pp. 174-178, 2000.
[47]. B. Moslehi, “Noise power spectra of optical two-beam interferometers induced by the laser phase noise,” J. Lightwave Technol., vol. 4, no. 11, pp. 1704-1710, Nov. 1986.