簡易檢索 / 詳目顯示

研究生: 張幼銘
Chang, Yu-Ming
論文名稱: 數轉乾坤:邁向工業4.0 之數位轉型策略規劃-顯示科技業之個案研究
Turn the tipping point towards change: Strategy planning for implementing a digital transformation toward industry 4.0: a case study in display technology sector
指導教授: 李昇暾
Li, Sheng-Tun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 61
中文關鍵詞: 數位轉型工業4.0人工智慧推動策略智慧製造彈性決策
外文關鍵詞: Digital Transformation, Industry 4.0, Artificial Intelligence, Strategy, Smart Manufacturing
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面對產業競爭壓力持續上升,及國際巿場上的削價競爭,再加上成本高利潤低、原物料成本波動、需求訂單不穩定、人力資源短缺及產品創新設計要求不斷提高…等多重挑戰與衝擊,再加上自2019年新冠肺炎及中美貿易大戰,直接影響台灣的經濟,各企業無不積極尋求解決之道,產業數位轉型亦已是刻不容緩。然而,各產業界雖考量大量投資自動化設備,企圖減少人工缺乏的衝擊,甚至導入智慧化生產,希望提昇製造的能力;但企業真的準備好,要開始數位轉型邁入工業4.0進行智慧製造嗎?是否有明確的步驟?完善的方法?適用的工具?足夠的人才?解決問題要花多久的時間在溝通及決策上?推動過程中組織如何因應?數位轉型規劃策略又是什麼?這是許多企業共通的痛點,但卻只能在暗中嘗試與摸索的。

    本研究透過質性研究-半結構式深入訪談法,針對一個數位轉型已初具成果的案例,對邁向工業4.0這個數位轉型的歷程進行訪談。著重於從個案的經驗中,學到最佳實踐與學習教訓,提出以成功實務經驗為基礎的指導,發展出一套有用的方法論,協助企業在推展時,可循序漸進按部就班,相似情境可縮短開發及摸索的時間,加速看到效益。讓決策者在決定推進企業數位轉型以邁向工業4.0時不致迷惘,可參考選擇相關較佳方案,以符合自身當前需要。

    掌握個案企業數位轉型邁向工業4.0的策略規劃,基本上可分為八大構面來探討,包含:組織、領導、策略、文化、專案、人才、願景及反思;從訪談的說明中,可以逐步揭開個案企業是如何在這些面向循序漸進的展開,舉凡對於成功的策略、所面對的困難與挑戰,包含敏捷組織與變革、領導態度與認知、具體策略與步驟、開放文化與協作、專案選擇與推進、人才培育與融合、轉型期許與願景及未來反思與方向;可以說是為學術研究理論外,提供一個具體實際經過的最佳案例輔助教材;相信能夠提供一個非常有價值的參考,也鼓勵更多的同路人,一起踏上這條未來必然趨勢的數位轉型之路。

    Faced with increasing pressure from industry competition, coupled with the COVID-19 and the U.S.-China trade war, companies have been actively seeking various solutions, and the need of digital transformation of the manufacturing industry is urgent.

    This research uses a qualitative research-semi-structured in-depth interview method to study on a company which is on the journey of digital transformation towards Industry 4.0 at the time when it achieved some outstanding initial results. From the experience of this case, capturing best practices and lessons learned, putting forward guidance based on successful practical experiences, and developing useful methodologies are irreplaceable strategies for companies in digital transformation. In addition, applying AI projects among multiple similar situations can significantly shorten the time of development and bring benefits swiftly. These strategies prevent the decision-makers from being at a loss when deciding to promote digital transformation in the enterprise. Moreover, they can refer to and choose relevant solutions to meet their current needs.

    This study investigates digital transformation in eight major dimensions, including organization, leadership, strategy, project, culture, talent, vision, and introspection. To sum up, successful strategies, challenges faced, organizational planning, human-machine collaboration, integration of cross-domain talents, selection strategy, and promotion strategy are thoroughly discussed in this research. It provides a concrete example and should be treated as a valuable experience, which is worthy of further study in other similar industries.

    摘 要 I 誌 謝 VI 目 錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 研究背景與動機 2 1.2 研究目的 4 1.3 研究範圍與限制 5 第二章 文獻探討 6 2.1 工業4.0相關研究 6 2.1.1 工業4.0智慧製造系統 6 2.1.2 導入AI的機會與風險 8 2.2 推動策略相關研究 9 2.2.1 組織轉型策略 9 2.2.2 推動步驟策略 11 2.3 研究方法探討 14 2.4 文獻探討小結 15 第三章 研究方法 17 3.1 研究架構 17 3.2 訪談方法 18 3.3 訪談對象 19 3.4 訪談設計 19 3.5 研究方法小結 20 第四章 研究結果 22 4.1 個案公司簡介 22 4.2 訪談基本資料 23 4.3 敘述性統計分析 24 4.4 洞見分析 26 4.4.1 策略規劃 27 4.4.2 執行推動 37 4.4.3 願景反思 44 4.5 個案研究小結 49 第五章 結論 50 5.1 研究成果 50 5.2 管理意涵 52 5.3 未來研究方向 53 參考文獻 54 附件一 訪談大綱 57 附件二 訪談內容節錄 60

    Babic, B., Chen, D. L., Evgeniou, T., & Fayard, A.-L. (2021). The Better Way to Onboard AI. Harvard Business Review.
    Brynjolfsson, E., & McAfee, A. (2017). The business of artificial intelligence: What it can - and cannot - Do for your organization. Harvard Business Review, 3-11.
    Chandler, A. D. (1990). Strategy and structure: Chapters in the history of the industrial enterprise (Vol. 120): MIT press.
    Columbus, L. (2020). Demystifying the Digital in Quality Management. Quality, 59(3), 33-36.
    Davenport, T. H. (2018). Artificial Intelligence for the Real World. Harvard Business Review, 96(1), 108-116.
    Davenport, T. H., & Redman, T. C. (2020). Digital Transformation Come Down to Talent in 4 Key Areas. Harvard Business Review, May, 21.
    Edwards, D. (2019). How to Realistically Kick Off a Digital Transformation Project and Ensure Long-Lasting Benefits. Quality, 58(7), 34-36.
    Euchner, J. (2019). Little ai, Big AI—Good AI, Bad AI. Research-Technology Management, 62(3), 10-12.
    Fountaine, T. (2019). Building the AI-Powered Organization. Harvard Business Review, 97(4), 62-73.
    Frankiewicz, B., & Chamorro-Premuzic, T. (2020). Digital transformation is about talent, not technology. Harvard Business Review, 6.
    Gartner. (2016). Gartner Estimates that 90 Percent of Large Organizations Will Have a Chief Data Officer by 2019. Gartner press release, January 26, 2016.
    Harrison, N., & O'Neill, D. (2017). If Your Company Isn’t Good at Analytics, It’s Not Ready for AI. Harvard Business Review Digital Articles, 2-5.
    Isabel, C.-B., Frederico, C.-J., & Oliveira, T. (2019). Assessing Industry 4.0 readiness in manufacturing: Evidence for the European Union. Computers in Industry, 107, 22-32.
    Jarrahi, M. H. (2018). Artificial intelligence and the future of work: human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586.
    Juskalian, R. (2016). Bosch’s Survival Plan. MIT Technology Review.
    Klein, M. (2020). Leadership characteristics in the era of digital transformation. Business & Management Studies: An International Journal, 8(1), 883-902.
    Lee, J., Ardakani, H. D., Yang, S., & Bagheri, B. (2015). Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation. Procedia CIRP, 38, 3-7.
    Lee, J., Davari, H., Singh, J., & Pandhare, V. (2018). Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20-23.
    Lee, J., Jin, C., & Bagheri, B. (2017). Cyber physical systems for predictive production systems. Production Engineering-Research and Development, 11(2), 155-165.
    Lee, J., Lapira, E., Bagheri, B., & Kao, H.-a. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, 1(1), 38-41.
    Lopes de Sousa Jabbour, A. B., Jabbour, C. J. C., Godinho Filho, M., & Roubaud, D. (2018). Industry 4.0 and the circular economy: a proposed research agenda and original roadmap for sustainable operations. Annals of Operations Research, 270(1), 273-286.
    Martinez, M. E. (2006). What is metacognition? Phi delta kappan, 87(9), 696-699.
    Michael, C., & Bryce, H. (2020). How high performing companies develop and scale AI. Harvard Business Review.
    Plastino, E. (2018). Game changing value from Artificial Intelligence: eight strategies. Strategy & Leadership, 46(1), 16-22.
    Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Computer Networks, 101, 158-168.
    Yoon, S. N., & Lee, D. (2019). Artificial intelligence and robots in healthcare: What are the success factors for technology-based service encounters? International Journal of Healthcare Management, 12(3), 218-225.
    Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: a review. Engineering, 3(5), 616-630.
    王文科, & 王智弘. (2014). 教育研究法: 台灣五南圖書出版股份有限公司.
    王金國. (2002). 成功學習的關鍵-自我調整學習. 課程與教學, 5(1), 145-163+ 178.
    林東毅. (2019). 工業4.0導入臺灣精密機械產業之研究-以油壓泵浦C公司為例. 暨南大學, Available from Airiti AiritiLibrary database. (2019年)
    科技產業資訊室. (2018). 全球LCD TV面版出貨量預估(2013-2019). https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=14889.
    科技產業資訊室. (2019). 液晶顯示器價格直直落. https://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=16062.
    胡幼慧. (1996). 質性研究: 理論, 方法及本土女性研究實例. 台北: 巨流.
    陳向明. (2002). 教師如何作質的研究. 台北: 洪葉文化事業有限公司.
    陳昇瑋, & 溫怡玲. (2019). 人工智慧在台灣-產業轉型的契機與挑戰. 台北市: 天下雜誌股份有限公司.
    榮泰生. (2013). 企業研究方法. 台北市: 台灣五南圖書出版股份有限公司.
    熊治民. (2017). 工業4.0應用方案發展現況:德國、中國與台灣. 機械工業雜誌(406), 20-28.
    劉弈寬. (2018). 工業4.0對提升製造系統韌性之關鍵因素. 虎尾科技大學, Available from Airiti AiritiLibrary database. (2018年)
    簡禎富. (2019). 工業3.5-台灣企業邁向智慧製造與數位決策的戰略. 台北市: 天下雜誌股份有限公司.
    簡禎富, 王宏鍇, & 傅文翰. (2018). [工業 3.5] 之先進智慧製造系統架構: 半導體智慧製造為例. 管理評論, 37(3), 15-34.
    簡禎富, 林國義, 許鉅秉, & 吳政鴻. (2016). 台灣生產與作業管理之相關期刊文獻回顧與前瞻:從工業3.0到工業3.5. 管理學報, 33(1), 87-103.

    無法下載圖示 校內:2026-07-24公開
    校外:2026-07-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE