簡易檢索 / 詳目顯示

研究生: 張藝懷
Chang, Yi-Huai
論文名稱: ANSYS電磁軟體應用於FBAR諧振特性之方法研究
Application of ANSYS EM Software on the Study of Resonant Properties of FBARs
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 109
中文關鍵詞: ANSYS電磁軟體體聲波器件FBAR氮化鋁壓電薄膜
外文關鍵詞: ANSYS, EM Software, FBAR, AlN piezoelectric thin film
相關次數: 點閱:111下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的主要使用高頻電磁軟體與聲波電路的結合應用來模擬薄膜塊體聲波諧振器(thin Film Bulk Acoustic wave Resonator, FBAR)之特性。首先,研究方法以ANSYS HFSS與Circuit軟體模擬電磁波訊號結合聲學系統來呈現元件諧振特性,從中探討FBAR本身QNL與整體QL之變化率為何?結果顯示FBAR本身經外圍電路負載效應條件下與Circuit結合模擬,Qs有些微變小,而Qp則有明顯衰減。再來探討其它負載效應條件包括對不同深度的直向型空腔以及斜向型空腔進行模擬分析,及傳輸線不同導體材料與厚度的條件加入造成QL的變化影響,結果顯示空腔的形式對FBAR元件的諧振特性並沒有太大的影響,而傳輸線導體的厚度愈薄時,對Q值有較大的損耗影響,反之當導體的厚度愈厚時,Q值的衰減程度就會減輕,負載效應條件傳輸線導體厚度為影響Q值最大的因素;其次,是將過去的實作量測結果結合ANSYS軟體應用提出三種計算Q值的方式,結果證明利用與模擬軟體結合的方式得到的結果更適合作為探討FBAR本身諧振特性的方法。

    Along with using MBVD model for the piezoelectric resonator, this thesis proposes ANSYS HFSS as an assistant to simulate the non-piezoelectric region in FBARs. The S-parameter result for the MBVD model is saved as an S2P file and for HFSS, an S4P file. These two files are combined in ANSYS Circuit to generate S-parameter results for the complete FBAR device. The unloaded quality factors (Q) or loaded QL can be deduced from S-parameters. Results of simulation indicate that types of cavities have medium effect on the change of parallel Q-factor while thinner electrodes can reduce both series and parallel Q factors to a greater scale. The calculated unloaded parallel Q factors from measured S-parameters are found much higher than loaded Qp’s. This observation implies that the non-piezoelectric region can degrade the quality of parallel resonance but has little effect on series resonance for a practical FBAR device.

    摘要 I 目錄 XI 表目錄 XIV 圖目錄 XVI 第一章 緒論 1 1-1 背景與問題意識 1 1-2 研究動機做法與目的 4 第二章 相關理論與模擬軟體技術定義 7 2-1 聲波運動方程式 7 2-2 壓電材料 11 2-2-1 壓電效應 12 2-2-2 壓電方程式 13 2-2-3 氮化鋁壓電薄膜 19 2-3 薄膜體聲波諧振器 23 2-3-1 FBAR元件結構 25 2-3-2 FBAR元件工作原理 26 2-4 由實驗數據得出FBAR特性 29 2-4-1 元件頻率響應分析 29 2-4-2 FBAR輸入阻抗Zin計算 30 2-4-3 FBAR品質因子Q的計算 30 2-4-4 FBAR等效電路模型 31 2-4-4FBAR元件研究現況 35 2-5 軟體理論計算FBAR特性方法 38 第三章 模擬研究流程與實驗設計 41 3-1 分析方法及概要 41 3-2 ANSYS 模擬軟體介紹 43 3-2-1 ANSYS HFSS邊界條件之定義與技術 43 3-2-2 HFSS Ports and Excitation 45 3-2-3 ANSYS Circuit操作方式 49 3-3 ANSYS模擬結合方法之驗證 53 3-3-1 目的與研究方法 53 3-3-2 模擬與分析步驟 55 3-3-3 結果與討論 61 3-4 基本FBAR之ANSYS 軟體分析 64 3-4-1 目的與研究方法 64 3-4-2 模擬與分析步驟 66 3-4-3 結果與討論 67 3-5 其他Cavity形式之影響分析 73 3-5-1 目的與研究方法 73 3-5-2 模擬與分析步驟 76 3-5-3 結果與討論 77 3-6 傳輸線導體材料與厚度之影響分析 81 3-6-1 目的與研究方法 81 3-6-2 模擬與分析步驟 82 3-6-3 結果與討論 83 第四章 模擬結合實作應用與比較 88 4-1 FBAR實作與實驗數據 88 4-2 研究方法 92 4-3 結果與討論 95 第五章 結論與建議 103 5-1 結論 103 5-2 未來研究建議 104 參考文獻 106

    [1] 陳. 張亚非, "薄膜體聲波諧振器的原理設計與應用," 2011. 常熟市文化印刷有限公司.
    [2] Q.-X. Su, P. Kirby, E. Komuro, M. Imura, Q. Zhang, and R. Whatmore, "Thin-film bulk acoustic resonators and filters using ZnO and lead-zirconium-titanate thin films," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 4, pp. 769-778, 2001.
    [3] J. B. Shealy, J. B. Shealy, P. Patel, M. D. Hodge, R. Vetury, and J. R. Shealy, "Single crystal aluminum nitride film bulk acoustic resonators," in 2016 IEEE Radio and Wireless Symposium (RWS), 2016: IEEE, pp. 16-19.
    [4] M.-C. Chao, Z.-N. Huang, S.-Y. Pao, Z. Wang, and C. Lam, "Modified BVD-equivalent circuit of FBAR by taking electrodes into account," in 2002 IEEE Ultrasonics Symposium, 2002. Proceedings., 2002, vol. 1: IEEE, pp. 973-976.
    [5] J. D. Larson, P. D. Bradley, S. Wartenberg, and R. C. Ruby, "Modified Butterworth-Van Dyke circuit for FBAR resonators and automated measurement system," in 2000 IEEE ultrasonics symposium. proceedings. an international symposium (Cat. No. 00CH37121), 2000, vol. 1: IEEE, pp. 863-868.
    [6] N. Ashraf, Y. Mesbah, A. Emad, and H. Mostafa, "Enabling the 5G: Modelling and design of high q film bulk acoustic wave resonator (FBAR) for high frequency applications," in 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020: IEEE, pp. 1-4.
    [7] P. Yun-Kwon et al., "Fabrication of monolithic 1-Chip FBAR duplexer for W-CDMA handsets," in 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), 2007: IEEE, pp. 803-806.
    [8] 思渤科技, "高頻電磁軟體解決方案," 2022/03/17.
    [9] 林威宇, "利用質量負載效應實現二階FBAR射頻濾波器之研究," master thesis, National Cheng Kung University, 2022.
    [10] J. F. Rosenbaum, Bulk acoustic wave theory and devices. Artech House Acoustics Library, 1988.
    [11] S. Katzir, "The discovery of the piezoelectric effect," in the Beginnings of Piezoelectricity: Springer, 2006, pp. 15-64.
    [12] P. Dineva, D. Gross, R. Müller, and T. Rangelov, "Piezoelectric materials," in Dynamic fracture of piezoelectric materials: Springer, 2014, pp. 7-32.
    [13] R. G. Polcawich and J. S. Pulskamp, "Additive processes for piezoelectric materials: Piezoelectric MEMS," in MEMS materials and Processes Handbook: Springer, 2011, pp. 273-353.
    [14] 吳朗, 電子陶瓷: 壓電陶瓷. 全欣, 1994.
    [15] A. I. S. 176-, "IEEE standard on piezoelectricity," ed: The Institute of Electrical and Electronics Engineers, Inc. New York, 1987.
    [16] G. Fuentes Iriarte, "AlN thin film electroacoustic devices," Acta Universitatis Upsaliensis,2003.
    [17] F. Gerfers et al., "Sputtered AlN thin films for piezoelectric MEMS devices-FBAR resonators and accelerometers,p.333,2010," in Solid state circuits technologies.
    [18] J. Erhart, P. Půlpán, and M. Pustka, Piezoelectric ceramic resonators. Springer, 2017.
    [19] L. Qin, Q. Chen, H. Cheng, and Q.-M. Wang, "Analytical study of dual-mode thin film bulk acoustic resonators (FBARs) based on ZnO and AlN films with tilted c-axis orientation," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 57, no. 8, 2010.
    [20] K.-W. Tay, C.-L. Huang, and L. Wu, "Influence of piezoelectric film and electrode materials on film bulk acoustic-wave resonator characteristics," Japanese journal of applied physics, vol. 43, no. 3R, p. 1122, 2004.
    [21] A. Khan, Z. Abas, H. S. Kim, and I.-K. Oh, "Piezoelectric thin films: an integrated review of transducers and energy harvesting," Smart Materials and Structures, vol. 25, no. 5, p. 053002, 2016.
    [22] X.-H. Xu, H.-S. Wu, C.-J. Zhang, and Z.-H. Jin, "Morphological properties of AlN piezoelectric thin films deposited by DC reactive magnetron sputtering," Thin solid films, vol. 388, no. 1-2, pp. 62-67, 2001.
    [23] S. Trolier-McKinstry and P. Muralt. Thin film piezoelectrics for MEMS [Online] Available: https://link.springer.com/article/10.1023/B:JECR.0000033998.72845.51
    [24] S. G.-C. J. Olivares, M. Clement, A. Sanz-Hervás, L. Vergara, J. Sangrador, E. Iborra, "Combined assessment of piezoelectric AlN films using X-ray diffraction, infrared absorption and atomic force microscopy," 16, Diamond and Related Materials, 4-7, 2007. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925963506004651
    [25] T. Nishihara, T. Yokoyama, T. Miyashita, and Y. Satoh, "High performance and miniature thin film bulk acoustic wave filters for 5 GHz," in 2002 IEEE Ultrasonics Symposium, 2002. Proceedings., 2002, vol. 1: IEEE, pp. 969-972.
    [26] A. Ababneh, U. Schmid, J. Hernando, J. Sánchez-Rojas, and H. Seidel, "The influence of sputter deposition parameters on piezoelectric and mechanical properties of AlN thin films," Materials Science and Engineering: B, vol. 172, no. 3, pp. 253-258, 2010.
    [27] C. C. Ruppel, "Acoustic wave filter technology–A review," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 64, no. 9, pp. 1390-1400, 2017.
    [28] S. Mahon and R. Aigner, "Bulk acoustic wave devices–why, how, and where they are going,p.15-18,2007," in CS Mantech Conference.
    [29] H. Campanella, Acoustic wave and electromechanical resonators: concept to key applications. Artech House, 2010.
    [30] C. P. Wen, "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, vol. 17, no. 12, pp. 1087-1090, 1969.
    [31] Y. Liu, Y. Cai, Y. Zhang, A. Tovstopyat, S. Liu, and C. Sun, "Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review," Micromachines, vol. 11, no. 7, p. 630, 2020.
    [32] N. Nor, Y. Jing, and N. Khalid, "Characteristics of film bulk acoustic wave resonator using different electrode materials," in AIP Conference Proceedings, 2021, vol. 2347, no. 1: AIP Publishing LLC, p. 020144.
    [33] M. Hara, J. Kuypers, T. Abe, and M. Esashi, "Surface micromachined AlN thin film 2 GHz resonator for CMOS integration," Sensors and Actuators A: Physical, vol. 117, no. 2, pp. 211-216, 2005.
    [34] M.-A. Dubois and P. Muralt, "Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications," Applied Physics Letters, vol. 74, no. 20, pp. 3032-3034, 1999

    [35] M.-A. Dubois and P. Muralt, "Stress and piezoelectric properties of aluminum nitride thin films deposited onto metal electrodes by pulsed direct current reactive sputtering," Journal of Applied Physics, vol. 89, no. 11, pp. 6389-6395, 2001.
    [36] M. Terzieva, "Overview of bulk acoustic wave technology and its applications," in National conference with international participation “ELECTRONICA 2016”, 2016, pp. 86-91.
    [37] T. Fischer, M. Albach, and G. Schubert, "Accurate impedance characterization with a vector network analyzer," in 2007 7th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology,St. Petersburg,Russia, 2007: IEEE, pp. 216-219.
    [38] R. Ruby, "11E-2 Review and comparison of bulk acoustic wave FBAR, SMR Technology," in 2007 IEEE Ultrasonics Symposium Proceedings, 2007: IEEE, pp. 1029-1040.
    [39] 胡湘竹, "薄膜體聲波共振腔設計與分析," master thesis, National Chiao Tung University, 2004,6.
    [40] I. S. Uzunov, M. D. Terzieva, B. M. Nikolova, and D. G. Gaydazhiev, "Extraction of modified butterworth—Van Dyke model of FBAR based on FEM analysis," in 2017 XXVI International Scientific Conference Electronics (ET), 2017: IEEE, pp. 1-4.
    [41] 劉永宏, "氮化鋁薄膜體聲波共振器分析與研製," master thesis, National Cheng Kung University, 2005.
    [42] 林哲榆, "以非晶質氮化鋁為支撐層之薄膜型塊體聲波共振器的研究," master thesis, National Cheng Kung University, 2006.
    [43] Wikipedia, "Touchstone file," 2022/09/14. [Online]. Available: https://en.wikipedia.org/wiki/Touchstone_file
    [44] 網際星空, "HFSS Boundry Condition," 2008. [Online]. Available: https://www.oldfriend.url.tw/ANSYS_ch_HFSS.html
    [45] Y. J. Chen. cybernet思渤科技. (2022,05/24). HFSS Foundation Course.
    [46] Howtosim, "How to Add Circuit Component S Parameter in HFSS Simulation," 2018,2. [Online]. Available: https://www.youtube.com/watch?v=0wZ8W_Dxows
    [47] Z. Peterson, "S11 Parameter vs. Return Loss vs. Reflection Coefficient: When Are They the Same?," 2021/02/11. [Online]. Available: https://resources.altium.com/p/s11-vs-return-loss-vs-reflection-coefficient-when-are-they-same
    [48] M. M. Torunbalci, T. J. Odelberg, S. Sridaran, R. C. Ruby, and S. A. Bhave, "An FBAR circulator," IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 395-397, 2018.
    [49] S. Taniguchi, T. Yokoyama, M. Iwaki, T. Nishihara, M. Ueda, and Y. Satoh, "7E-1 an air-gap type FBAR filter fabricated using a thin sacrificed layer on a flat substrate," in 2007 IEEE Ultrasonics Symposium Proceedings, 2007: IEEE, pp. 600-603.

    下載圖示 校內:立即公開
    校外:2024-11-18公開
    QR CODE