| 研究生: |
陳致宇 Chen, Chi-Yu |
|---|---|
| 論文名稱: |
矽烷表面改質對二氧化矽奈米複合材料塗層性質之影響 Effect of silane surface modification on the surface properties of SiO2 nanocomposite coatings |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 奈米複合材料 、耐磨耗 、表面改質 |
| 外文關鍵詞: | modification, nanocomposites, abrasion resistance |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
添加奈米金屬氧化物粉體於高分子有機物中能有效提升高分子的機
械性質,使其具有高硬度以及耐磨耗等特性,但奈米氧化物必須在高分子中分散良好才能發揮其強化效果。本研究選擇以奈米二氧化矽製備奈米二氧化矽/1,6-己二醇二丙烯酸酯(HDDA)膠體,並以3-甲基丙烯酸氧丙基三甲氧基矽烷(MEMO)作為二氧化矽表面改質劑促進奈米粉米粉體膠體的穩定性。由FTIR 以及NMR 研究結果顯示MEMO 的吸附行為會隨著MEMO 添加量而改變,當矽烷添加比例MEMO/SiO2<0.6 時,MEMO以單體型態平行奈米二氧化矽表面進行吸附,而當MEMO 添加比例MEMO/SiO2>0.6 時,矽烷會縮合並吸附到奈米二氧化矽表面,形成較厚的吸附層,能有效提升膠體的穩定性。
當MEMO 添加量比例為MEMO/SiO2<0.6 時,由於矽烷無法在表面
形成單層吸附,膠體的穩定性不佳,以MEMO/SiO2=0.2 改質條件所製備膠體製作成之塗料即使SiO2 固含量達12.5wt%,塗層之鉛筆硬度仍然只有4H,且透光度差,與含3wt%未改質之SiO2 製備塗料鉛筆硬度相同。
而MEMO/SiO2≧0.6 之樣品,由於具有良好的表面改質,所有樣品之鉛筆硬度皆提昇至6H,透光度佳,且楊氏模數、硬度、耐磨耗性質皆有大幅提升。
由電子顯微鏡以及原子力學顯微鏡觀察矽烷添加量MEMO/SiO2≧
0.6 之塗層結果顯示,矽烷吸附厚度較薄之二氧化矽奈米粉末(ME
MO/SiO2=0.6)會傾向於分佈在塗層表面,而吸附層厚度較厚之樣品
(MEMO/SiO2=1.5)由於與高分子相容性較佳,會均勻分佈在塗層內部,同時塗層中未吸附之矽烷寡聚物會填充在奈米粉體的孔隙間,降低塗層孔隙率且會使得奈米二氧化矽/高分子界面不明顯。
Introducing nano-sized inorganic metal oxide into polymers can greatly increase the hardness and abrasion resistance and improve the mechanical properties of the nanocomposites. However, it is difficult to disperse the nanoparticles homogeneously in the polymer. In this study, the nano-sized silica was modified with MEMO to increase the stability of SiO2/HDDA colloid. According to the results of FTIR and NMR spectrum, the silane adsorption behavior was dependent on the MEMO concentration. As the ratio of MEMO/SiO2 was<0.6, hydrolysed MEMO monomers would adsorb onto silica surface and form T1 structure. The colloid stability is low due to incomplete coverage of the silane mono layer on the silica surface. If the ratio MEMO/SiO2>0.6, MEMO monomers would condense first and then adsorb onto the surface of silica to form the T2 or T3 structure, meaning the adsorption layer would be thicker and the colloid could be more stable.
The pencil hardness of the coating only reach 4H even though the silica content increase up to 12.5wt% for the sample with nano-sized SiO2 modified with the ratio MEMO/SiO2=0.2. However, as the ratio of MEMO/SiO2 was≧0.6, a thicker silane adsorption layer can obtain, which results in increase of the pencil hardness of the coatings from 4H to 6H. In addition, all the samples with MEMO/SiO2≧0.6 show highly transparent, and little difference in universal hardness, Young’s modulus, and abrasion resistance.
The AFM and FE-SEM images show that silica particles with thin coverage layer (MEMO/SiO2=0.6) would mainly distribute on the surface of coatings but the silica particles with thick coverage layer (MEMO/SiO2=1.5) would distribute homogeneously in the coating. The unabsorbed MEMO oligomers could fill in the space between the silica nanoparticles to decrease the porosity of the coatings and make the interface between the particle and polymer indistinction.
【1】 柯揚船 , S. Peat , 聚合物無機奈米複合材料 , 五南圖書 ,
2004。
【2】 F. Mammeri , E. L. Bourhis , L. Rozes and C. Sanchez , Journal of
Materials Chemistry , 15 , 3787-3811 , 2005 .
【3】 K. H. Haas , H. Wolter , Current Opinion in Solid State and
Material Science , 4 , 571-580 , 1999 .
【4】 高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,五南圖書,
2005。
【5】 Robert J. Pugh, L. Bergstrom , Surface and Colloid Chemistry in
Advanced Ceramics Processing , Marcel Dekker , 1994 .
【6】 Temple C. Patton , Paint Flow and Pigment Dispersion ,
Interscience Publishers , 1964 .
【7】 C. E. Chaffey , Colloid and Polymer Science , 255 , 691-698 ,
1977 .
【8】 Brinker , C. Jeffrey./Scherer, George W. ,Sol-Gel Science ,
Academic Press , 1990 .
【9】 Edwin P. Plueddemann , Silane coupling agents , Plenum Press ,
1991 .
【10】 H. Ishida and J. D. Miller , Macromolecules , 17 , 1659-1666 ,
1984 .
【11】 N. Nishiyama , K. Horie , and T. Asakura , Journal of Colloid
and Interface Scinece , 129 , 1989 .
【12】 N. Nishiyama , R. Shrick , H. Ishida , Journal of colloid and
interface science , 143 , 146-156 , 1991 .
【13】 M. W. Daniels and L. F. Francis , Journal of Colloid and Interface
Science , 205 , 191-200 , 1998 .
【14】 M. W. Daniels , J. Sefcik , L. F. Francis , and A. V. McCormick ,
Journal of Colloid and Interface Science , 219 , 351-356 , 1999 .
【15】 W. Posthumus , UV-curable acrylate metal oxide nanocomposite
coatings , 2004 .
【16】 F. Bauer , H. Ernst , U. Decker , M. Findeisen , H.-J. Gläsel , H.
Langguth , E. Hartmann , R. Mehnert ,R. Mehnert and C. Peuker
, Macromol. Chem. Phys. , 201 , 2654-2659 , 2000 .
【17】 F. Bauer , A. Freyer , H.Ernst , H.-J. Gläsel , R. Mehnert , Applied
Surface Science , 179 , 118- 121 , 2001 .
【18】 F. Bauer , V. Sauerland , H.-J. Gläsel , H. Ernst , M. Findeisen , E.
Hartmann , Helmut , Langguth , B. Marquardt , R. Mehnert ,
Macromolecular Materials Engineering , 287 , 546-552 , 2002 .
【19】 F. Bauer , H.-J. Gläsel , E. Hartmann , E . Bliz , R. Mehnert ,
Neuclear Instruments and Methods in Physics Research B , 208 ,
267-270 , 2003 .
【20】 F. Bauer , V. Sauerland , H. Ernst , H.-J. Gläsel , S. Naumov , R.
Mehnert , Macromolecular Chemistry and Physics , 204 ,
375-383 , 2003 .
【21】 F. Bauer , H. Ernst , D. Hirsch , S. Naumov , M. Pelzing , V.
Sauerland and R. Mehnert , Macromolecular Chemistry and
Physics , 205 , 1587 , 2004 .
【22】 H. Chen , S. Zhou , G. Gu and L. Wu , Journal of Dispersion
Science and Technology , 26 , 27-37 , 2005 .
【23】 A. P. Philise and A. Vrij , Journal of Colloid and Interface
Science ,128 , 121-136 , 1989 .
【24】 J. D. Lee and S. M. Yang , Journal of Colloid and Interface
Science , 205 ,397-409 , 1998 .
【25】 J. H. So , S. M. Yang , J. C. Hyun , Chemical Engineering
Science , 56 , 2967-2977 , 2001 .
【26】 G. Chen , S. Zhou , G. Gu , H. Yang , L. Wu , Journal of Colloid
and Interface Science , 281 , 339-350 , 2005 .
【27】 F. Li , S. Zhou , L. Wu , Journal of Applied Polymer Science , 98 ,
1119-1124 , 2005 .
【28】 徐國財 , 張立德 , 奈米複合材料 , 五南圖書 , 2004。
【29】 G. Kickelbick , Progress in Polymer Science , 28 , 83-114 , 2003 .
【30】 J. Wen and G. L. Wilkes , Chemistry Materials , 8 ,1667-1681 ,
1996 .
【31】 J. Blanchard , F. Ribot , C. Sanchez , P. V. Bellot , A. Trokiner ,
Journal of Non Crystalline Solids , 265 , 83-97 , 2000 .
【32】 C. S. Betrabet and G. L. Wilkes , Chemistry Materials , 7 ,
535-545 , 1995 .
【33】 D. E. Rodrigues , A. B. Brennan , C. Betrabet , B. Wang , and G.
L.Wilkes , Chemistry Materials , 4 , 1437-1446 , 1992 .
【34】 R. K. Iler , The Chemistry of Silica , Wiley ,1979 .
【35】 P. Hajji , L. David , J. F. Gerard , J. P. Pascault , G. Vigier , Journal
of Polymer Science Part B-Polymer Physics , 37 , 3172-3187 .
1999 .
【36】 M. Xiong , S. Zhou , L. Wu , B. Wang , L. Yang , Polymer , 45 ,
8127-8138 , 2004 .
【37】 M. Li , S. Zhou , B. You , L. Wu , Macromolecular Materials and
Engineering , 291 , 984-992 , 2006 .
【38】 R. W. Rice , Journal of Materials Science , 14 , 2768-2772 , 1979 .
【39】 J. Wen , V. J. Vasudevan , G. L. Wilkes , Journal of Sol-Gel
Science and Technology , 5 , 115-126 , 1995 .
【40】 S. Ahmed , F. R. Jones , Journal of Materials Science , 25 ,
4933-4942 , 1990 .
【41】 S . W. Shang , J. W. Williams , K-J. M. Soderholm , Journal of
Materials Science , 29 , 2406-2416 , 1994 .
【42】 Y. Wang , S. Lim , J. L. Luo , Z. H. Xu , Wear , 260 , 976-983 ,
2006 .
【43】 S. Zhou , L. Wu , J. S , W. Shen , Progress in Organic Coatings ,
45 , 33-42 , 2002 .
【44】 M. Z. Rong , M. Q. Zhang , H. Liu , H. Zeng , B. Wetzel and
Klaus Friedrich , Industrial Lubrication and Tribology , 53 ,
72-77 , 2001 .
【45】 M. Z. Rong , M. Q. Zhang , Y. X. Zheng , H. Zeng , B. Wetzel and
Klaus Friedrich , Polymer , 42 , 167-183 , 2001 .
【46】M. Z. Rong , M. Q. Zhang , G. Shi , Q. L. Ji , B. Wetzel , K.
Friedrich , Tribology International , 36 , 697-707 , 2003 .
【47】 G. Shi , M.Q. Zhang , M. Z. Rong , B. Wetzel , K. Friedrich ,
Wear , 256 , 1072-1081 , 2004 .
【48】D. M. Liu , Journal of Materials Science , 35 , 5503-5507 , 2000 .