| 研究生: |
葛千慈 Ko, Chien-Tzu |
|---|---|
| 論文名稱: |
改良型調變控制策略於海潮流發電系統用SPWM變流器之研究 Study on Modified Control Strategy for SPWM Inverter of Tidal Current Generating System |
| 指導教授: |
李嘉猷
Lee, Jia-You- |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 正弦波寬調變變流器 、總諧波失真 、調變控制策略 |
| 外文關鍵詞: | sinusoidal pulsewidth modulation inverter, total harmonic distortion, modulation control strategy |
| 相關次數: | 點閱:82 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在建構適用於海潮流發電系統之直交流電源轉換變流器,並採用改良型正弦波寬調變控制策略,針對變動之輸入電壓進行對應補償,俾以降低輸出電壓之低頻諧波含量。海潮流發電機所產生之交流電能,係經由整流濾波電路轉換為穩定直流電壓,再藉變流器轉換為適當規格之交流電輸出。在整流濾波電路中,使用大容值電容作為濾波器,雖可使濾波電壓準位較為平穩,然亦造成整流器之導通角度變小,致使再生電能無法持續饋入;惟若使用小容值電容作為濾波器,雖可提高導通角度,但會導致變流器直流鏈電壓為變動值。針對直流鏈浮動電壓,變流器若採標準型正弦波寬調變,其輸出交流電壓將具大量諧波成分,影響輸出電壓品質。本文係就直流鏈為浮動電壓時,提出改良型調變控制策略,配合直流鏈電壓之變動,調整脈波寬度,以降低輸出電壓之低頻諧波含量。經由理論分析與模擬驗證,並實際建構具改良型調變控制策略之海潮流發電系統用SPWM變流器,實驗結果顯示,所提改良型正弦波寬調變控制策略,得有效降低輸出電壓之低頻諧波含量。
This thesis proposes a control method for sinusoidal pulsewidth modulation (SPWM) single-phase inverters for the tidal current generating system. The AC power from the generator is changed to DC power by a rectifier and filter, and then the DC power is changed to AC power by an inverter to provide a stable voltage for the electronic product. However, the current is discontinuous and has the higher peak current because of the filter composed of capacitors. But it will cause the fluctuating voltage if the filter is removed. So that the output voltage of the inverter will have large low-order harmonics when the classical SPWM is used. It is verified by simulation and experiment and that the proposed modified SPWM could make total harmonic distortion (THD) of the output voltage lower when the input voltage of the inverter is not constant. The results of simulation and experiment demonstrate that the low-order harmonics of output voltage is reduced effectively and its THD is less than 2.5%.
[1] D. Liu, Y. Xu, Q. Wei, and X. Liu, “Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming,” IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 1, pp. 36-46, Dec. 2018.
[2] U. Akram, M. Khalid, and S. Shafiq, “Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system,” IET Renewable Power Generation, vol. 12, no. 1, pp. 72-80, Jan. 2018.
[3] N. R. Tummuru, M. K. Mishra, and S. Srinivas, “Dynamic energy management of renewable grid integrated hybrid energy storage system,” IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7728-7737, Jan. 2015.
[4] Y. M. Atwa, E. F. E. Saadany, M. M. A. Salama, and R. Seethapathy, “Optimal renewable resources mix for distribution system energy loss minimization,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 360-370, Feb. 2010.
[5] M. Liserre, R. Cardenas, M. Molinas, and J. Rodriguez, “Overview of multi-MW wind turbines and wind parks,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1081-1095, Apr. 2011.
[6] A. Y. Saber and G. K. Venayagamoorthy, “Plug-in vehicles and renewable energy sources for cost and emission reductions,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1229-1238, Apr. 2011.
[7] T. Ahmed and S. Mekhilef, “Semi-Z-source inverter topology for grid-connected photovoltaic system,” IET Power Electronics, vol. 8, no. 1, pp. 63-75, Jan. 2015.
[8] M. Chen and D. Sun, “A unified space vector pulse width modulation for dual two-level inverter system,” IEEE Trans. Power Electron., vol. 32, no.2, pp. 889-893, Feb. 2017.
[9] S. V. Araujo, P. Zacharias, and R. Mallwitz, “Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3118-3128, Sep. 2010.
[10] M. Rajeev and V. Agarwal, “Single phase current source inverter with multiloop control for transformerless grid-PV interface,” IEEE Trans. Ind. Appl., vol. 54, no. 3, pp. 2416-2424, May 2018.
[11] S. Daher, J. Schmid, and F. L. M. Antunes, “Multilevel inverter topologies for stand-alone PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2703-2712, July 2008.
[12] 楊勝翰,具功率因數修正及最大功率追蹤功能之三相風電轉換系統,國立成功大學電機工程學系碩士論文,2012年。
[13] W. d. J. Kremes and C. H. I. Font, “Proposal of a three-phase bridgeless PFC SEPIC rectifier with MPPT for small wind energy systems,” in Proc. IEEE INDUSCON, 2016, pp. 1-8.
[14] A. T. Lahiani, A. B. B. Abdelghani, and I. S. Belkhodja, “Partial shading effect investigation on PV performance indicators,” in Proc. IEEE IREC, 2018, pp. 1-6.
[15] X. Zhang, X. Zha, S. Yue, and Y. Chen, “A frequency regulation strategy for wind power based on limited over-speed de-loading curve partitioning,” IEEE Access, vol. 6, pp. 22938-22951, Apr. 2018.
[16] 張勇、崔蓓蓓和邱宇晨,潮流發電-一種開發潮汐能的新方法,上海市電力公司,2009年。
[17] 吳財福、陳裕愷和張健軒,太陽光電能供電與照明系統綜論第二版,全華圖書股份有限公司,2007年。
[18] 林軒,具弦波調變與空間向量調變之三相變流器系統,國立成功大學電機工程學系碩士論文,2011年。
[19] 王宏彰,具柔切與最大功率追蹤功能之市電併聯型多輸入太陽電能轉換系統研製,國立成功大學電機工程學系碩士論文,2010年。
[20] 黃河,直接電流控制法之併聯電力系統換流器之研製,國立成功大學電機工程學系碩士論文,2009年。
[21] 林右鎗,具電流修正控制之市電併聯型變流器,國立成功大學電機工程學系碩士論文,2010年。
[22] H. Liu, Y. Ran, K. Liu, W. Wang, and D. Xu, “A modified single-phase transformerless Y-source PV grid-connected inverter,” IEEE Access, vol. 6, pp. 18561-18569, Mar. 2018.
[23] S. Dutta and K. Chatterjee, “A buck and boost based grid connected PV inverter maximizing power yield from two PV arrays in mismatched environmental conditions,” IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5561-5571, July 2018.
[24] L. Wang, C. S. Lam, and M. C. Wong, “Analysis, control, and design of a hybrid grid-connected inverter for renewable energy generation with power quality conditioning,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 6755-6768, Aug. 2018.
[25] M. A. H. Navas, F. L. G, J. L. A. Puma, J. A. T. A., and A. J. S. Filho, “Battery energy storage system applied to wind power system based on Z-source inverter connected to grid,” IEEE Latin America Transactions, vol. 14, no. 9, pp. 4035-4042, Sep. 2016.
[26] S. A. Amamra, K. Meghriche, A. Cherifi, and B. Francois, “Multilevel inverter topology for renewable energy grid integration,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8855-8866, Nov. 2017.
[27] A. Merabet, L. Labib, A. M. Y. M. Ghias, C. Ghenai, and Tareq Salameh, “Robust feedback linearizing control with sliding mode compensation for a grid-connected photovoltaic inverter system under unbalanced grid voltages,” IEEE J. Photovolt., vol. 7, no.3, pp. 828-838, May 2017.
[28] R. Panda and R. K. Tripathi, “A novel sine wave inverter with PWM DC link,” in Proc. IEEE ICIIS, 2008, pp. 1-5.
[29] S. V. Raghavan and R. Jayabarathi, “Simulation and analysis of power synchronization control for voltage source inverter,” in Proc. IEEE RDCAPE, 2017, pp. 348-353.
[30] S. Mamilla, S. K. Anisetty, and M. R. Pallavi, “A new cascaded H-bridge multilevel inverter with reduced switch count,” in Proc. IEEE SmartTechCon, 2017, pp. 17-22.
[31] C. Vishnu and U. Syamkumar, “Time shared buck and boost converter based H-bridge inverter for grid tied and standalone applications,” in Proc. IEEE SmartTechCon, 2017, pp. 1259-1264.
[32] M. Hammami, M. Vujacic, A. Viatkin, and G. Grandi, “Analysis of a flexible single-phase multilevel inverter topology for photovoltaic applications,” in Proc. IEEE IREC, 2018, pp. 1-6.
[33] G. Liu, D. Wang, M. Wang, C. Zhu, and M. Wang, “Neutral-point voltage balancing in three-level inverters using an optimized virtual space vector PWM with reduced commutations,” IEEE Trans. Ind. Electron., vol. 65, no. 9, pp. 6959-6969, Sep. 2018.
[34] X. Quan, X. Dou, Z. Wu, M. Hu, H. Song, and A. Q. Huang, “A novel dominant dynamic elimination control for voltage-controlled inverter,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6800-6812, Aug. 2018.
[35] 江炫樟(譯),電力電子學第三版,全華圖書股份有限公司,2014 年。
[36] E. Babaei and E. S. Asl, “High-voltage gain half-bridge Z-source inverter with low-voltage stress on capacitors,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 191-197, Jan. 2017.
[37] N. V. Triet, A. Rikiya, and T. Kenji, “Stability of FPGA based emulator for half-bridge inverters operated in stand-alone and grid-connected modes view document,” IEEE Access, vol. 6, pp. 3603-3610, Jan. 2018.
[38] Z. Yao, L. Xiao, and Y. Yan, “Control strategy for series and parallel output dual-buck half bridge inverters based on DSP Control,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 434-444, Feb. 2009.
[39] Y. Xia and R. Ayyanar, “Naturally adaptive, low-loss zero-voltage-transition circuit for high-frequency full-bridge inverters with hybrid PWM,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4916-4933, June 2018.
[40] H. F. Xiao, K. Lan, and Li Zhang, “A quasi-unipolar SPWM full-bridge transformerless PV grid-connected inverter with constant common-mode voltage,” IEEE Trans. Power Electron., vol. 30, no. 6, pp. 3122-3132, June 2015.
[41] Y. Chen, D. Xu, J. Xi, G. Hu, C. Du, Y. Li, and M. Chen, “A ZVS grid-connected full-bridge inverter with a novel ZVS SPWM scheme” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3626-3638, May 2016.
[42] G. r. Zhu, H. Wang, B. Liang, S. C. Tan, and J. Jiang, “Enhanced single-phase full-bridge inverter with minimal low-frequency current ripple,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 937-943, Feb. 2016.
[43] C. Lung, H. Kakigano, Y. Miura, and T. Ise, “Implementation of sigma-delta modulation controller for single-phase three-wire inverter in stand-alone operation applied for hybrid generation system for residential houses,” in Proc. IEEE PEDS, 2013, pp. 680-685.
[44] Eduardo Alarcon-Gallo, “Third harmonic injection on sliding mode control for a three-phase, three-wire inverter,” in Proc. IEEE IECON, 2013, pp. 1910-1915.
[45] Y. He, H. S. h. Chung, C. N. M. Ho, and W. Wu, “Direct current tracking using boundary control with second-order switching surface for three-phase three-wire grid-connected inverter,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5723-5740, July 2017.
[46] N. O. Çetin and A. M. Hava, “Scalar PWM implementation methods for three-phase three-wire inverters,” in Proc. IEEE ELECO, 2009, pp. 447-451.
[47] V. Sivachidambaranathan and V. Geetha, “Double frequency SPWM inverter topology for PV systems,” in Proc. IEEE ICCPEIC, 2017, pp. 800-803.
[48] W. Yao, K. Wang, Z. Lu, and Xiantao Zhu, “Digital SPWM inverter design and implementation,” in Proc. IEEE ICEICE, 2011, pp. 5874-5850.
[49] J. Selvaraj and N. A. Rahim, “Multilevel inverter for grid-connected PV system employing digital PI controller,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 149-158, Jan. 2009.
[50] A. C. Oliveira, C. B. Jacobina, and A. M. N. Lima, “Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2295-2304, Aug. 2007.
[51] 黃淑萱,應用於潮流發電之數位控制三相電源轉換系統,國立成功大學電機工程學系碩士論文,2011年。
[52] 李嘉猷,具波動輸入電壓波寬調變變流器之諧波控制法,國立成功大學電機工程學系博士論文,1987年。
[53] 張卿傑,手把手教你學DSP:基於TMS320F28335,北京航空航天大學出版社,2015年。
[54] EPARC,電力電子學綜論,全華圖書股份有限公司,2011。