研究生: |
王啟任 Wang, Chi-Jen |
---|---|
論文名稱: |
利用高分子及奈米碳管製作觸控模組透明導電膜之研究 A study of conductive polymer and CNT transparent conduction layer for application of touch sensor |
指導教授: |
李文熙
Li, Wen-Hsi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 奈米碳管 、導電高分子 、透明導電膜 、觸控面板 |
外文關鍵詞: | Carbon nanotube, CNT, Transparent conductive film, Touch panel |
相關次數: | 點閱:88 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ITO透明導電膜薄膜由於銦礦的逐漸枯竭,成本也跟著水漲船高,而對顯示器領域來說透明導電極為不可或缺之關鍵材料,因此替代性的研究也成為一門顯學,奈米碳管有良好的高結晶性、耐化學性、強機械度與良好的導電性,而導電高分子也可以實驗耐彎曲及高透光之目的,本研究除探討奈米碳管添加導電高分子的效果並實際利用調配好之奈米碳管油墨來製作透明導電膜,並且以此基礎設計9.7”之觸控面板,並測試其功能以驗證奈米碳管添加導電性高分子對於製作透明導電膜的可行性。
由研究中可得到0.2WT%CNT+乙醇胺3%+3%Binder並使用超音波震盪1hr於本研究中有較好的分散效果,且使用該分散後奈米碳管與市售Clevios PH500以1:1的比例的添加可以證明奈米碳管加上導電高分子可以有效提高導電性並且以濕膜塗佈厚度20.57um;乾膜測得厚度為4.2um可以製做出258Ω/□面電阻,其導電率為6.14x102 S/cm之透明導電膜,透光度可達88%左右,雖然在同樣基礎下光學特性仍不及ITO等材料,但是對於成本及製程上具有一定之優勢,本研究同時發現塗佈越厚阻抗越低但是透光越差。而濕膜厚大於32um則會開始內縮且團聚,小於14um則阻值表現不穩定。
本研究就光學及電性做探討,並實際使用Solomon的SSD2533 IC製作做出9.7”觸控面板,且經驗證可以做動。雖然現有文獻指出奈米碳管具有良好機械特性及耐化學性等特性,但是對於環測等耐候試驗,例如高溫高濕、冷熱沖擊、高低溫保存、耐溶劑、水煮或鹽霧測試等本研究並無著墨,因此沒有根據來證明其耐用性,因為要達商業化應用在耐環測測試上是重要的項目,因此可以做為後續研究,進行補強奈米碳管對於顯示器領域上應用的可行性。另外在圖案化加工上亦需要有良好的方式,如此才有機會被大量應用並且商業化。
ITO transparent conductive film due to the gradual depletion of indium ore and the cost continued to rise. The transparent conductive extremely indispensable material for the display area, so alternative research has also become a study. Carbon nanotubes have high crystallinity, chemical resistance, strong mechanical level and good electrical conductivity. The conductive polymer can experiment with resistance to bending and high transmittance purpose of this study. In addition, to explore the effect of carbon nanotubes add in conductive polymer, and the actual utilization of deployment of good ink of carbon nanotubes to make transparent conductive film. Under this basic, I design 9.7 "touch panel and test the feasibility of adding carbon nanotubes into conductive polymer for the production of transparent conductive film.
From the research, I found that 0.2WT% CNT plus the 3% ethanol amines with 3% binder for one hour get good dispersion effect by supersonic. Clevios PH500 and the dispersion obtained from the study prove that the proportion of adding carbon nanotubes and conductive polymer can effectively improve the electrical conductivity. The wet film coating 20.57um thickness; the dry film thickness measurement is 4.2um and makes the transparent conductive film surface resistance of 258Ω / □, the conductivity of 6.14x102 S / cm, and the light transmission up to about 88%. Although under the same basic, the optical properties still not good as ITO material, but there are advantages on cost and process. This study also found that thicker coating makes lower impedance but worse transparency. The wet film will start to shrink and reunion when thickness is greater than 32um and resistance performance will instability if less than 14um.
This study investigated the optical and electrical properties, and the actual use of Solomon's SSD2533 IC production to make a 9.7 "touch panel and works well have been proven. Literatures indicate that carbon nanotubes have good mechanical properties and chemical resistance features, but for the resistance of the environment test and other tests, such as high temperature and humidity, thermal shock, high cryopreservation solvent, boiled, and salt spray test of this study does not pass. Therefore, no basis to prove their durability, up to commercial applications is an important project in the environment measured resistance testing can be used as a follow-up study. More researches are needed for the feasibility of reinforcing carbon nanotubes applications in the display field. In addition, the patterns of processing also need to have a better way to gain a chance to be a large number of applications and commercialization.
[1] A.J. Steckl and G. Mohammed, “The Effect of Ambient Atmosphere in the Annealing ofIndium Tin Oxides Films”, J. Appl. Phys.,51(7), 3890-3895.1980.
[2] Toki Motoyuki, Aizawa Mamoru,“Sol-gel formation of ITO thin films from
a sol including ITO power”, Journal of Sol-Gel Science and Technology,
717~720, 1995.
[3] Hokkaido Univ, "Preparation of ITO thin films by sol-gel method" ,Journal of the Ceramic Society Japan,102,202~207,1994.
[4] Indian Inst of Technology, "Photovoltaic properties of indium tin
oxide(ITO)/silicon junction prepared by spray pyrolysis, Dependence on
oxidation time", Semiconductor Science and Technology,7(1992) 1471~1475.
[5]Indian Inst of Technology, "Photovoltaic properties of spray pyrolytic
grown indium tin oxide(ITO)/silicon junction-dependence on substrate
temperature ”Semiconductor Science and Technology, 7(1992)1471~1475.
[6] J. C. Manifacier and J. P. Fillard," Deposition of In2O3-SnO2 Layer on glass substrate using a spraying method", Thin Solid Films,76 (1981)89~95.
[7] M.Bender, W.Seelig, C.Daube, H.Frankenberger, B.Ocker, J.Stollenwerk “ Dependenceof oxygen flow on optical and electrical properties of DC-magnetron”, Thin solid Films 326.72-77,1998.
[8] C.Choi., W.J. Lee, J.K., S.O. Jung, W.J. Lee, W.S. Kim, S.J. Kim, C. Yoon“ Effects ofoxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by d.c. magnetron sputtering”, Thin solid Films 258.274-278, 1995.
[9] A.N.H. Al-Ajili, S.C. Bayliss“ A study of the optical, electrical and structural properties ofreactively sputtered InOx and ITOx thin films”, Thin solid Films 305, 116-123, 1997.
[10] S. K. Choi and J. I. Lee “Effect of film density on electrical properties of indium tin oxidefilms deposited by dc magnetron reactive sputtering”, J. Vac. Sci. Technol. A, Vol. 19,2043-2047, 2001.
[11] H. Kim, C. M. Gilmore, ”Electrical,optical,and structure properties of indium-tin-oxide thin films for organic light-emitting devices”, Journal of Applied Physics,86(1999)6451~6461
[12] C. Countal, A. Azema,J. C. Roustan,”Fabrication and characterization of ITO films deposited by excimer laser evaporation”, Thin Solid Films, 288(1996)248~253.
[13] L. R. O. Cruz, O. j. Santos,”Electrical properties of ITO films deposited by activited reactive evaporation “,Matericals Letters,12 (1991)72~76.
[14] Jin Ma, Zhang, et al., ”Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature “,Applied Surface Science, 19(1998)198~201.
[15] H. Kim, C. M. Gilmore, ”Electrical, optical, and structure properties of indium-tin-oxide thin films for organic light-emitting devices”, Journal of Applied Physics,86 (1999)6451~6461.
[16] Je-Hsiung Lan, Kanicki Jerzy, ”ITO surface ball formation induced by atomic hydrogen in PECVD and HW-CVD tools”, Thin Solid Films,304 (1997)123~129.
[17] Watkins-Johnsons Co, ”Highly conductive and transparent films of tin and fluorine doped indium oxide produced by APCVD”, Thin Solid Films,221(1992),166~182.
[18] E. Yadin, V. Kozlov, and E. Machevskis “Recent Developments in the Deposition of ITO and AR Coatings”, 2003 Society of Vacuum Coaters ,46th Annual Technical Conference Proceedings, 185-189, 2003
[19] T.Minami, H.Sonohara, T.Kakumu, S.Takata“ Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering”, Thin solid Films 270, 37-42,1995.
[20] V. Craciun, D. Craciun, X. Wang, T. J. Anderson, R. K. Singh “ Transparent and conducting indium tin oxide thin films grown by pulsed laser deposition at low temperatures”, Journal of Optoelectronics and Advanced Materials Vol. 5, No. 2, 401-408, 2003.
[21] A.Amaral, P.Brogueira, C.Nunes de Carvalho, G.Lavareda“Influence of the initial layers on the optical and electrical properties of ITO films” Optical Materials 17, 291-294, 2001.
[22] T.Minami, H.Sonohara, T.Kakumu, S.Takata“ Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering”, Thin solid Films 270, 37-42, 1995.
[23] J. Matthijn Dekkers, Guus Rijnders, and Dave H. A. Blank “Role of Sn doping in In2O3 thin films on polymer substrates by pulsed-laser deposition at room temperature”, APPLIED PHYSICS LETTERS 88, 2006.
[24] K.UTSUMI, H.IIGUSA “The Effect of SnO2 Concentration on the Electrical and Optical Properties of In2O3-SnO2 Films”, TOSOH Research & Technology Review Vol.47, 2003
[25] S.Takahashi, M.Ikeda, H.Watnabe “Sputtering target for forming high-resistance transparent conductive film, and method for producing the film”, United States Patent US 2004/0231981 A1, Nov.25, 2004.
[26] C.Weeks “Carbon nanotube transparent electrodes for touch screens”, Veritas et Visus, Touch Panel, 34-37,Oct,2006.
[27] T. W. Ebbesen, Carbon Nanotubes: preparation and properties, CRC press, 1997.
[28] S. Iijima, Nature(London) 354(1991), 56.
[29] 成會明(2004)奈米碳管。五南圖書出版股份有限公司,台北市,676頁。
[30] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33(1995),883.
[31] Chen, L. C., K. H. Chen, S. L. Wei, P. D. Kichambare, J. J. Wu, T. R. Lu and C. T. Kuo,“Crystalline SiCN: a hard material rivals to cubic BN”, Thin Solid Films 355-356 (1999)
[32] Chen, L. C., C. T. Wu, J. J. Wu and K. H. Chen, “Growth, characterization, andproperties of carbon nitride with and without silicon addition”, Inter. J. Mon. Phys. B14(2000) 333-348.
[33] Chen, P., X. Wu, J. Lin and K. L. Tan, “High H2 uptake by alkali-doped carbonnanotubes under ambient pressure and moderate temperatures”, Science 285 (1999)91-93.
[34] Chi, R. P. (Ed.), Tribology Materials JongSa Corp., Taiwan, 1984. 112-116.
[35] SJ Tans, MH Devoret, HJ Dai, A Thess, RE Smalley, LJ Geerligs, C Dekker,Nature, 386(1997) 474.
[36]Jin, Y., and F. G. Yuan (2003) Simulation of elastic properties of single-walled carbon nanotubes. Composites Science and Technology 63:1507-1515.
[37]Thio (1996) Electrical conductivity of individual carbon nanotubes. Nature 382: 54-56.
[38] N. Hamada, S. Sawada, and A. Oshiyama, Physical Review Letters,68(1992), 1579.
[39]Ebbesen, T. W., H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T.Van Landuyt, Science, 267(1995), 1334.
[40] Zhang, Z., J. Peng, and H. Zhang (2001) Low-temperature resistance ofindividual single-walled carbon nanotubes: A theoretical estimation.Applied Physics Letters 79(21): 3515-3517.
[41] Celii, F. G., P. E. Pehrsson, H. –t. Wang and J. E. Butler, “Infrared detection of gaseousspecies during the filament-assisted growth of diamond”, Appl. Phys. Lett. 52 (1988)2043-2045.
[42]Cox, D. and S. T. Picraux, Application: Energy and Chemical Industries, in Nanotechnology Research Directions: IWGN Workshop Report Vision for Nanotechnology Research and Development in the Next Decade, WTEC, Loyola College, Maryland, September (1999).
[43] H. Dai, E. W. Wong, and C. M. Lieber, Science, 272(1996), 523.
[44]T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi,and T. Thio, Nature, 382(1996), 54.
[45]曲喜新,楊邦朝,姜節儉, 電子薄膜材料. 北京科學出版社 (1996).
[46]鄧至均,黃彥瑋,馬振基, 奈米碳管之分散及表面官能基化技術. 化工資訊與商情 75, 26-36 (2009).
[47]Huang, W., Lin, Y., Taylor, S., Gaillard, J., Rao, A. M., and Sun, Y. P., Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Letters 2 (3), 231-234 (2002).
[48]Kang, Y. and Taton, T. A., Micelle-encapsulated carbon nanotubes: a route to nanotube composites. Journal of the American Chemical Society 125 (19), 5650-5651 (2003).
[49]Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., and Huffman, C. B.,Fullerene pipes. Science 280 (5367), 1253 (1998).
[50]Fan, S., Jiang, K., Liu, K., Liu, L., Zhai, Y., Zhao, Q., Fan, S. S., Jiang, K. L., Zhai, Y. C., and Zhao, Q. Y.,Carbon nanotube composite material used as transparent conductive film, comprises several carbon nanotubes in which ends are joined together by van der Waals attractive force and conductive coating layer disposed on carbon nanotube Patent No. EP2085976-A1 (2009).
[51]Green, A. A., Hersam, M. C., Green, A., and Hersam, M.,Colored transparent conductive film comprises single-walled carbon nanotubes, and has a visible color, and specified average transmittance in the visible spectrum and sheet resistance Patent No. US2009061194-A1 (2009).
[52] Kawahara, Y. and Takada, H.,Electroconductive composition used for electroconductive film for transparent electrodes and touch panel, contains conductive polymer, ionic liquid, and carbon nanotube having abundance of primary particles above specified value Patent No. JP2009035619-A (2009).
[53]Shimizu, K.,Transparent conductive film for optical device e.g. touch panel, has carbon nanotube layer that is contacted and laminated with electroconductive polymeric layer Patent No. JP2009211978-A (2009).
[54]Kaempgen, M., Duesberg, G. S., and Roth, S., Transparent carbon nanotube coatings. Applied Surface Science 252 (2), 425-429(2005).
[55] Kawahara, Y. and Takada, H.,Electro-conductive composition used for electro-conductive film for transparent electrodes and touch panel, contains conductive polymer, ionic liquid, and carbon nanotube having abundance of primary particles above specified value Patent No. JP2009035619-A (2009).
[56]Minami, T., New n-type transparent conducting oxides. MRS Bulletin 25 (8), 38-44 (2000).
[57]Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Doan, S., Avrutin, V., Cho, S. J., and Morkoc, H., A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98, 041301 (2005).
[58]www.clevios.com
[59]http://www.amtouch.com.tw/tw/products/projected-capacitive-touch-screen/basics/
[60] http://www.candotec.com/touch.html
[61] http://clevios.com/en/home/clevios-homepage.aspx
[62]http://www.hcstarck.com/
[63]http://clevios.com/en/home/clevios-homepage.aspx
[64]http://www.piip.pro/index.php/zw/database/touchpanel
[65]Solomon Systec SSD2533 Application Note_0.14