簡易檢索 / 詳目顯示

研究生: 蔡明克
Tsai, Ming-Ke
論文名稱: 具直流抵補電壓校正之呼吸感測晶片設計
Design of a Respiration Detection Chip with DC Offset Calibration Technique
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 73
中文關鍵詞: 呼吸感測系統懸臂樑抵補電壓校正
外文關鍵詞: respiration detection system, cantilever, DC offset calibration
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了減少嬰幼兒及老年人因呼吸疾病而致死的比率,本論文實現一呼吸感測系統。此系統包含微懸臂樑架構氣流感測器、訊號處理電路、數位轉換電路,並將此系統單晶片實現。本電路使用直流抵補電壓校正技術來消除微機電氣流感測器所產生的直流抵補電壓,且設計兩種版本的感測器來分析,比較敏感度並改善模擬設定。
    本晶片採用台積電 (TSMC) 0.35μm CMOS/MEMS 2P4M 3.3V 混合訊號製程加上微機電後製程製作,以48 S/B封裝,尺寸為1.797×2.353 mm2,含感測器系統功耗為 6.31 mW。

    To lower the death rate of infants and elders due to respiration diseases, a respiration detection system has been implemented. The system contains the MEMS cantilevered flow sensor, the signal processing circuit and the digital conversion circuit, and they are integrated into a single chip. A DC offset calibration technique has been proposed to eliminate the offset voltage caused by the MEMS cantilevered flow sensor. Two versions of MEMS cantilevered flow sensors with different designs are implemented and their sensitivities are compared.
    This chip was fabricated by using Taiwan Semiconductor Manufacturing Company (TSMC) 0.35μm CMOS/MEMS 2P4M 3.3V mixed-signal polycide process and MEMS post process. The die area of this chip is 1.797x 2.353 mm2. The system power consumption is 6.31 mW containing the sensor power consumption.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 2 Chapter 2 Respiration Detection Technique 3 2.1 Signal Source of Respiration Detection 3 2.1.1 Movement Detection 3 2.1.2 Blood Oxygen Detection 4 2.1.3 Flow Detection 5 2.2 Proposed Piezoresistive Respiration Detection Sensor 9 2.2.1 Introduction of MEMS 9 2.2.2 Design of Piezoresistive Sensor 11 2.3 Simulation of Cantilever Flow Sensor 13 2.3.1 Pressure Analysis of Piezoresistive Flow Sensor 14 2.3.2 Temperature Analysis of Piezoresistive Flow Sensor 20 Chapter 3 Block Diagram and Circuit Design 22 3.1 Block Diagram 22 3.2 Sensor 23 3.3 DC Servo Loop 24 3.3.1 Main Amplifier 25 3.3.2 VLT-SC Integrator 27 3.3.3 Operation 29 3.4 Programmable Gain Amplifier 30 3.5 Switched-Capacitor Low Pass Filter 31 3.6 Magnitude to Digital Converter 33 3.7 Clock Supply Circuit 36 Chapter 4 Simulation of Respiration Detection System 41 4.1 Operational Amplifier 41 4.2 Clock Supply Circuit 42 4.3 Switched-capacitor Low-pass Filter 43 4.4 MDC 44 4.5 Full System 45 Chapter 5 Measurement Result 48 5.1 Measurement Environment and Consideration 48 5.2 Measurement Results 50 5.2.1 MEMS Cantilever-Based Sensor 50 5.2.2 Clock 55 5.2.3 Analog System 57 5.2.4 MDC 61 5.2.5 Respiration Detection System 62 5.3 Comparison 67 Chapter 6 Conclusion and Future Work 69 References 70

    [1] H. F. Krous, “Sudden Infant Death Syndrome and Unclassified Sudden Infant Deaths: A Definitional and Diagnostic Approach,” Current Pediatric Reviews, vol. 6, no. 1, pp. 5–12, Feb. 2010.
    [2] T. H. Liu, “Design of an infant respiration detection system on a single chip by use of a micro-cantilever flow sensor,” M.S. thesis, Dept. Elect. Eng. National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2011.
    [3] 陶宏洋(2003),「第十四章呼吸系統監控」,重症醫學與護理,新北市:藝軒圖書出版社。
    [4] 臺大醫院醫學工程部,「生理監視器功能與參數量測原理簡介」,參考來源:http://www.ntuh.gov.tw/BMED/equipment/Doclib/生理監視器功能與參數量測原理簡介.aspx
    [5] J. G. Webster, “Measurements of the Respiratory System,” Medical Instrumentation: Application and Design. New York: Wiley, 1998, ch. 9.
    [6] D. Li, T. Li and D. Zhang, “A monolithic piezoresistive pressure-flow sensor with integrated signal-conditioning circuit,” IEEE Sensor J., vol. 11, no. 9, pp. 2122–2128, Sep. 2011.
    [7] C. L. Dai and M. C. Liu, “Complementary metal–oxide–semiconductor microelectromechanical pressure sensor integrated with circuits on chip,” Jpn. J. Appl. Phys., vol. 46, no. 2, pp. 843–848, Feb. 2007.
    [8] P. Bruschi, M. Dei, and M. Piotto, “An Offset Compensation Method with Low Residual Drift for Integrated Thermal Flow Sensors,” IEEE Sensors J., vol. 11, no. 5, pp. 1162–1168, May 2011.
    [9] S. Chaurasia and B. S. Chaurasia, “Design and simulation of low pressure piezoresistive MEMS sensor using analytical models,” in Proc. 2012 Students Conf. on Engineering and systems (SCES), 2012, pp. 1–5.
    [10] Y. H. Wang, C. Y. Lee, and C. M. Chiang, “A MEMS-based air flow sensor with a free-standing micro-cantilever structure,” Sensors, vol. 7, pp. 2389–2401, Oct. 2007.
    [11] 蓋永鋒(2000),「微型壓阻式壓力感測器製作之研究」,國立成功大學工程科學系碩士論文。
    [12] S. D. Senturia, Microsystems Design, Boston, MA: Kluwer Academic, 2000.
    [13] N. Matsuzuka and T. Toriyama, “Analysis for piezoresistive property of heavily-doped polysiscon with upper and lower bounds,” J. Appl. Phys., vol. 108, pp. 1–11, Sep. 2010.
    [14] R. Y. Lin, “Design of a Respiration Detection Single Chip by Using Both Voltage and Current-Mode MEMS Sensors,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ. Tainan, Taiwan, R.O.C., Jul. 2012.
    [15] J. F.Witte, J. H. Huijsing, and K. A. A. Makinwa, “A current-feedback instrumentation amplifier with 5 μV offset for bidirectional high-side current-sensing,” IEEE J. Solid-State Circuit, vol. 43, no. 12, pp. 2769–2775, Dec. 2008.
    [16] Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8 W 60 nV √Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1534–1543, Jul. 2011.
    [17] T. Denison, K. Consoer, W. Santa, G. molnar, and K. Mieser, “A 2 μW, 95nV/rtHz, chopper-stabilized instrumentation amplifier for chronic measurement of bio-potentials,” in Proc. IEEE Instrumentation and Measurement Technology Conf., May 2007, pp. 1–6.
    [18] X. Jiawei, F. Qinwen, J. H. Huijsing, C. Van, R. F. Yazicioglu, and K. A. A. Makinwa, “Measurement and analysis of current noise in chopper amplifiers,” IEEE J. Solid-State Circuit, vol. 48, no. 7, pp. 1575–1584, Jul. 2013.
    [19] Q. Fu, Y. Xiao, K. Tan, X. Liu, and Q. Shan, “Analysis and design of instrumentation amplifier based on chopper technology, ” in 2010 Academic Symposium on Optoelectronics and Microelectronics Technology and 10th Chinese-Russian Symposium on Laser Physics and Laser Technology, RCSLPLT/ASOT, Jul. 2010, pp. 318–321.
    [20] Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 2.1 μW area-efficient capacitively-coupled chopper instrumentation amplifier for ECG applications in 65 nm CMOS,” in IEEE ASSCC, Nov. 2010, pp. 1–4.
    [21] K. Nagaraj, “A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits,” IEEE Trans. Circuits Syst., vol. 36, no. 9, pp. 1210–1216, Sep. 1989.
    [22] A. Veeravalli, E. Sanchez-Sinencio, and J. Silva-Martinez, “Transconductance amplifier structures with very small transconductances: A comparative design approach,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 700–775, Jan. 2002.
    [23] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–965, Jan. 2003.
    [24] W. M. C. Sansen, Analog Design Essentials. Dordrecht, Netherland: Springer, 2008.
    [25] C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” in Proc. IEEE, vol. 84, no. 11, Nov. 1996, pp.1584–1614.
    [26] R. J. Baker, “Clocked Circuits,” in CMOS Circuit Design, Layout, and Simulation, 2nd edition, New York: Wiley, 2008, pp. 386–388.
    [27] Y. W. Wang, “A wide-range programmable sinusoidal frequency synthesizer for electrochemical impedance spectroscopy measurement system,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jul. 2012.
    [28] W. J. Wu, “Design of an impedance-to-digital converter for electrochemical impedance spectroscopic measurement system,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., Jun. 2013.
    [29] Chia-Ling Wei, Yu-Chen Lin, Tse-An Chen, Ren-Yi Lin, and Tin-Hao Liu “Respiration Detection Chip with Integrated Temperature-Insensitive MEMS Sensors and CMOS Signal Processing Circuits,” in IEEE Trans. Biomed. Circuits Syst., Reg, 0003, Jan, 2014.
    [30] J. G. Webster, “Measurements of the Respiratory System,” Medical Instrumentation:Application and Design. New York: Wiley, 1998, ch.9.
    [31] T. Cho, “Low-power, low-voltage, analog-to-digital converter technique using pipelined architectures,” Ph.D. Thesis, University of California, Berkeley, 1995.

    無法下載圖示 校內:2019-12-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE