簡易檢索 / 詳目顯示

研究生: 楊維軒
Yang, Wei-Hsuan
論文名稱: 使用三維不連續伽遼金法之快速有效的晶片熱分析方法
Fast and Effective Thermal Analysis for Integrated Circuits Using 3 Dimensional Discontinuous Galerkin Method
指導教授: 邱瀝毅
Chiou, Lih-Yih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 49
中文關鍵詞: 不連續伽遼金法三維熱分析暫態溫度分析
外文關鍵詞: Discontinuous Galerkin Method, Three Dimensional Thermal Simulation, Transient Thermal Analysis
相關次數: 點閱:47下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程進步,電晶體密度上升導致了積體電路的功率密度亦大幅上升。而功率密度的上升將使得晶片溫度升高,進而造成晶片功能失常或效率下降。同時,3D IC的結構更容易造成「熱點」而導致上述問題。如今,晶片架構的探索以及功率最佳化的研究常在電子系統層級平台上進行。上述研究對於晶片溫度的影響,便需要在平台上進行溫度模擬才能探究。
    暫態分析可以求得各時間點晶片的溫度分布,然而此種分析常消耗大量時間與運算資源。為了減少模擬時間,本論文考慮應用三維不連續伽遼金法於晶片溫度暫態分析,提出了不連續伽遼金法於三維溫度分析之簡化公式,並具有平行運算特性的溫度分析方法與分析流程。和最先進的暫態分析方法相比,其運算速度達到2.77倍且誤差幅度為2.03%。

    The density of transistors increase leads to the increase of power density of an integrated circuits. The increase of power density may lead to higher temperature that may, subsequently, result in higher chances of function failure or degradation of performance of a chip. Also, the structure of state-of-the-art three-dimensional stack ICs is much easier to cause “hot spots” and leads to the mentioned problems. Nowadays, the exploration of chip architecture and system-level power optimization can be performed at electronic-system-level platform to resolve heat issues. Hence, a fast and effective thermal analysis is needed to understand the temperature impact caused by various exploring architectures.

    Transient thermal analysis can obtain distribution of temperatures on a chip at any specific time, however, the analysis is time consuming and resource hungry. To improve the simulation time, the three-dimensional discontinuous Galerkin method for heat equations is considered. In the thesis, we propose to simplify the discontinuous Galerkin method and provide high-level of parallelism features to speed up thermal analysis. When compared to the results obtained from the state-of-the-art transient thermal analysis, the proposed method can speed up by 2.77 times with marginal error by 2.03%.

    摘要 i 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 第 1 章 緒論 1 1.1 研究概觀 1 1.2 研究動機 2 1.3 研究貢獻 3 1.4 論文架構 3 第 2 章 相關研究背景 4 2.1 熱方程式 4 2.1.1 熱傳導方程式 4 2.1.2 熱對流方程式 5 2.2 加權殘值法 6 2.3 插值多項式 8 2.3.1 單變數拉格朗日多項式 8 2.3.2 適用於本論文的多變數拉格朗日插值多項式 9 2.4 不連續伽遼金法 11 2.4.1 起始條件 11 2.4.2 初始分析與伽遼金法應用 12 2.4.3 近似解與數值通量之假設 13 2.4.4 進階分析 14 2.4.5 矩陣形式表示 16 2.4.6 顯式尤拉法 23 第 3 章 相關文獻探討 24 3.1 考量溫度梯度之三維晶片溫度模擬器 24 3.2 以特徵正交分解建立近似函數 26 第 4 章 應用不連續伽遼金法於晶片熱分析之方法 29 4.1 問題簡介 29 4.1.1 晶片佈局 29 4.1.2 結構化網格 30 4.2 三維不連續伽遼金法熱分析 30 4.2.1 矩陣形式積分結果 30 4.2.2 矩陣形式化簡及其積分結果 31 4.3 整體熱分析流程 33 第 5 章 實驗結果與分析 34 5.1 實驗環境與測試案例 34 5.2 實驗一、可信度驗證 37 5.3 實驗二、運算速度之比較 38 5.3.1 網格密度與執行時間關係 38 5.3.2 取樣時間長度與執行時間長度關係 41 第 6 章 結論與未來研究 45 6.1 結論 45 6.2 未來工作 46 參考文獻 47 個人簡歷 49

    [1] G.Van derPlas et al., “Design Issues and Considerations for Low-Cost 3-D TSV IC Technology,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 293–307, Jan.2011.
    [2] W.Huang, S.Ghosh, S.Velusamy, K.Sankaranarayanan, K.Skadron, and M. R.Stan, “HotSpot: A compact thermal modeling methodology for early-stage VLSI design,” IEEE Trans. Very Large Scale Integr. Syst., vol. 14, no. 5, pp. 501–513, 2006.
    [3] M.Pedram and S.Nazarian, “Thermal Modeling, Analysis, and Management in VLSI Circuits: Principles and Methods,” Proc. IEEE, vol. 94, no. 8, pp. 1487–1501, 2006.
    [4] B. J.Kane and T. T.Results, “Thermal Analysis Integrated in the IC Design Flow,” no. June, pp. 33–35, 2008.
    [5] L.-Y.Lu and L.-Y.Chiou, “Temperature gradient-aware thermal simulator for three-dimensional integrated circuits,” IET Comput. Digit. Tech., vol. 11, no. 5, pp. 190–196, 2017.
    [6] J.Fourier, Théorie analytique de la chaleur. Paris: Firmin Didot, 1822.
    [7] J. R.Cannon and F. E.Browder, The One-Dimensional Heat Equation. Cambridge: Cambridge University Press, 1984.
    [8] L. M.Jiji, Heat Convection. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.
    [9] T. I.Zohdi, A Finite Element Primer for Beginners. Cham: Springer International Publishing, 2015.
    [10] J.-P.Berrut and L. N.Trefethen, “Barycentric Lagrange Interpolation,” SIAM Rev., vol. 46, no. 3, pp. 501–517, Jan.2004.
    [11] B. Q.Li, Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. London: Springer-Verlag, 2006.
    [12] J. S.Hesthaven and T.Warburton, Nodal Discontinuous Galerkin Methods, vol. 54. New York, NY: Springer New York, 2008.
    [13] U. M. (Uri M. .Ascher andL. R.Petzold, Computer methods for ordinary differential equations and differential-algebraic equations. Philadelphia: Society for Industrial and Applied Mathematics, 1998.
    [14] R.Qin and L.Krivodonova, “A discontinuous Galerkin method for solutions of the Euler equations on Cartesian grids with embedded geometries,” J. Comput. Sci., vol. 4, no. 1–2, pp. 24–35, 2013.
    [15] W.Jia, B. T.Helenbrook, and M. C.Cheng, “Fast thermal simulation of FinFET circuits based on a multiblock reduced-order model,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 35, no. 7, pp. 1114–1124, 2016.
    [16] R.Pinnau, “Model Reduction via Proper Orthogonal Decomposition,” Springer, Berlin, Heidelberg, 2008, pp. 95–109.
    [17] K.Skadron, M. R.Stan, W.Huang, Sivakumar Velusamy, Karthik Sankaranarayanan, and D.Tarjan, “Temperature-aware microarchitecture,” 30th Annu. Int. Symp. Comput. Archit. 2003. Proceedings., pp. 2–13, 2003.
    [18] L. Y.Lu et al., “A testable and debuggable dual-core system with thermal-aware dynamic voltage and frequency scaling,” Proc. Asia South Pacific Des. Autom. Conf. ASP-DAC, vol. 25-28-Janu, pp. 17–18, 2016.
    [19] H. C.Hsieh, P. H.Huang, C. H.Lin, and H. L.Lin, “Stacking memory architecture exploration for three-dimensional integrated circuit in 3-D PAC,” Int. Syst. Chip Conf., pp. 317–321, 2012.

    無法下載圖示 校內:2024-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE