簡易檢索 / 詳目顯示

研究生: 葉日揚
Ye, Ri-Yang
論文名稱: 低損耗LnVO4-2MgO (Ln = Sm, Nd)及低溫燒結Ba2Li3Nd3Mo8O32介電材料在微波頻段之特性與應用
Characterization and Applications of Low-Loss LnVO4-2MgO (Ln = Sm, Nd) and Low-Firable Ba2Li3Nd3Mo8O32 Dielectrics at Microwave Frequencies
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 115
中文關鍵詞: 微波介電材料低溫燒結陶瓷帶通濾波器
外文關鍵詞: microwave dielectric ceramics, bandpass filter
相關次數: 點閱:115下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為三個部分,首先介紹SmVO4-2MgO及NdVO4-2MgO系列之低損耗介電陶瓷材料,接著介紹Ba2Li3Nd3Mo8O32低溫燒結陶瓷,最後則是濾波器模擬和實作分析。
    第一部分,由EDS和視密度分析結果,可得知本實驗合成之材料為LnVO4-2MgO而非Mg2LnVO6 (Ln = Sm, Nd)。SmVO4-2MgO燒結在1110"℃" 持溫4小時,擁有最佳的微波介電特性εr ~ 11.0, Q × f ~ 74,000 GHz, τf ~ –64.9 ppm/°C;NdVO4-2MgO燒結在1090"℃" 持溫4小時,其最佳特性為εr ~ 11.2, Q × f ~ 59,600 GHz, τf ~ –72.2 ppm/°C。
    第二部分,由XRD以及EDS發現,除了主相Ba2Li3Nd3Mo8O32之外還帶有未知二次相。Ba2Li3Nd3Mo8O32燒結在870"℃" 持溫4小時,有其最佳介電特性εr ~ 13.1, Q × f ~ 11,500 GHz, τf ~ +4.1 ppm/°C,並且因其燒結溫度小於950"℃" ,有作為LTCC材料之潛力。
    最後,在第三部分,我們以HFSS模擬濾波器電路,並將電路實作於FR4、Al2O3以及Ba2Li3Nd3Mo8O32基板上,由結果可以發現,高的介電常數能使電路面積縮小,與另外兩基板材料相比,使用Ba2Li3Nd3Mo8O32作為基板會有最小尺寸。

    LnVO4-2MgO (Ln = Sm, Nd) and Ba2Li3Nd3Mo8O32 ceramics were prepared by conventional solid-state reaction. The SmVO4-2MgO ceramic sintered at 1110"℃" for 4h shows microwave dielectric properties of εr ~ 11.0, Q × f ~ 74,000 GHz and τf ~ –64.9 ppm/"℃" ; the NdVO4-2MgO ceramic sintered at 1090"℃" for 4h shows that of εr ~ 11.2, Q × f ~ 59,600 GHz and τf ~ –72.2 ppm/"℃" . The Ba2Li3Nd3Mo8O32 ceramics sintered at 870"℃" for 4h has good properties of εr ~ 13.1, Q × f ~ 11,500 GHz, τf ~ +4.1 ppm/"℃" and may be a candidate for the LTCC use. In addition, a square-loop SIR structure was used as a prototype of dual-band bandpass filter and the Ba2Li3Nd3Mo8O32 dielectric was made into the substrate in practice. Results show that filter of Ba2Li3Nd3Mo8O32 substrate has the smallest filter size compared with filters of FR4 and Al2O3 substrates.

    摘要 I Extended Abstract III 目錄 VIII 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 文獻回顧 4 2-1 微波技術與共振器發展 4 2-2 介電共振器之原理 7 2-3 微波介電特性 11 2-3-1 介電常數(Dielectric Constant, εr) 11 2-3-2 品質因子(Quality Factor, Q) 17 2-3-3 共振頻率溫度飄移係數(τf) 20 2-3-4 介電特性量測方法 21 2-4 低溫共燒陶瓷(LTCC)技術簡介 29 第三章 微帶線濾波器原理及設計 30 3-1 濾波器 30 3-1-1 濾波器簡述 30 3-1-2 濾波器種類 31 3-2 微帶線 35 3-2-1 微帶線簡述 36 3-2-2 微帶線傳輸模態 37 3-2-3 微帶線理論 38 3-2-4 微帶線傳輸之損失因素 40 3-2-5 不連續效應 41 3-3 設計濾波器 44 3-3-1 耦合式方形環狀濾波器 44 3-3-2 步階阻抗設計 45 3-3-3 殘段 48 3-3-4 耦合間隙 49 3-3-5 彎角斜切 50 第四章 實驗方式與分析儀器概述 52 4-1 材料製備 52 4-1-1 粉末配製、煆燒及固態反應法 53 4-1-2 黏劑添加、過篩與壓模 54 4-1-3 去黏劑與燒結 55 4-2 材料分析 55 4-2-1 阿基米德法 55 4-2-2 XRD 56 4-2-3 SEM/EDS 57 4-3 濾波器之製作 60 4-4 實驗藥品及儀器 62 第五章 實驗結果與討論 64 5-1 SmVO4-2MgO 64 5-1-1 SmVO4-2MgO之XRD相分析 64 5-1-2 SmVO4-2MgO之SEM/EDS分析 66 5-1-3 SmVO4-2MgO之視密度分析結果 69 5-1-4 SmVO4-2MgO之εr值分析結果 70 5-1-5 SmVO4-2MgO之Q × f值分析結果 71 5-1-6 SmVO4-2MgO之τf值分析結果 72 5-2 NdVO4-2MgO 73 5-2-1 NdVO4-2MgO之XRD相分析 73 5-2-2 NdVO4-2MgO之SEM/EDS分析 75 5-2-3 NdVO4-2MgO之視密度分析結果 78 5-2-4 NdVO4-2MgO之εr值分析結果 79 5-2-5 NdVO4-2MgO之Q × f值分析結果 80 5-2-6 NdVO4-2MgO之τf值分析結果 81 5-3 SmVO4-2MgO及NdVO4-2MgO之綜合討論 82 5-3-1 以二次法嘗試合成Mg2SmVO6及Mg2NdVO6 83 5-3-2 SmVO4及NdVO4之結構 87 5-3-3 SmVO4-2MgO及NdVO4-2MgO分析結果之比較 88 5-4 Ba2Li3Nd3Mo8O32 91 5-4-1 Ba2Li3Nd3Mo8O32之XRD相分析 91 5-4-2 Ba2Li3Nd3Mo8O32之SEM/EDS分析 93 5-4-3 Ba2Li3Nd3Mo8O32之視密度分析結果 96 5-4-4 Ba2Li3Nd3Mo8O32之εr值分析結果 96 5-4-5 Ba2Li3Nd3Mo8O32之Q × f值分析結果 97 5-4-6 Ba2Li3Nd3Mo8O32之τf值分析結果 99 5-5 濾波器模擬與實作之結果 101 5-5-1 玻璃纖維基板(FR4)之濾波器模擬與實作結果 101 5-5-2 氧化鋁基板之濾波器模擬與實作結果 104 5-5-3 Ba2Li3Nd3Mo8O32基板之濾波器模擬與實作結果 106 第六章 結論 109 參考文獻 111

    [1] S. Kawashima, M. Nishida, and I. Ueda, "Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies", Journal of the American Ceramic Society, vol. 66, no. 6, pp. 421-423, 1983.
    [2] K. Matsumoto, T. Hiuga, K. Takada, and H. Ichimura, "Ba(Mg1/3Ta2/3)O3 ceramics with ultra-low loss at microwave frequencies", in Applications of Ferroelectrics. 1986 Sixth IEEE International Symposium on, 1986, pp. 118-121: IEEE.
    [3] C. L. Huang and S. H. Huang, "Low-loss microwave dielectric ceramics in the (Co1−xZnx)TiO3 (x = 0 – 0.1) system", Journal of Alloys and Compounds, vol. 515, pp. 8-11, 2012.
    [4] C. L. Huang, C. H. Chu, F. S. Liu, and P. C. Yu, "High-Q microwave dielectrics in the (Mg1−xZnx)4Ta2O9 ceramics", Journal of Alloys and Compounds, vol. 590, pp. 494-499, 2014.
    [5] F. K. Vreeland, "A Sine-Wave Electrical Oscillator of the Organ Pipe Type", Physical Review (Series I), vol. 27, no. 4, p. 286, 1908.
    [6] J. Goerth, "Early magnetron development especially in Germany", in Origins and Evolution of the Cavity Magnetron (CAVMAG), 2010 International Conference on the, 2010, pp. 17-22: IEEE.
    [7] R. H. Varian and S. F. Varian, "A high frequency oscillator and amplifier", Journal of Applied Physics, vol. 10, no. 5, pp. 321-327, 1939.
    [8] M. Thumm, "Historical German contributions to physics and applications of electromagnetic oscillations and waves", in Proc. Int. Conf. on Progress in Nonlinear Science, Nizhny Novgorod, Russia, 2001, vol. 2, pp. 623-643.
    [9] P. Redhead, "The Invention of the Cavity Magnetron and its Introduction into Canada and the USA", Physics in Canada, vol. 57, no. 6, p. 321, 2001.
    [10] R. Richtmyer, "Dielectric resonators", Journal of Applied Physics, vol. 10, no. 6, pp. 391-398, 1939.
    [11] S. B. Cohn, "Microwave bandpass filters containing high-Q dielectric resonators", IEEE Transactions on Microwave Theory and Techniques, vol. 16, no. 4, pp. 218-227, 1968.
    [12] D. M. Pozar, "Microwave engineering", John Wiley & Sons, 2009.
    [13] Y. Kobayashi and M. Katoh, "Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method", IEEE Transactions on Microwave Theory and Techniques, vol. 33, no. 7, pp. 586-592, 1985.
    [14] D. Kajfez, "Basic principles give understanding of dielectric waveguides and resonators", Microwave System News, vol. 13, pp. 152-161, 1983.
    [15] D. Kajfez, A. W. Glisson, and J. James, "Computed modal field distributions for isolated dielectric resonators", IEEE transactions on Microwave Theory and Techniques, vol. 32, no. 12, pp. 1609-1616, 1984.
    [16] J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders, and S. B. Warner, "The science and design of engineering materials", Irwin Chicago, 1995.
    [17] C. B. Carter and M. G. Norton, "Ceramic materials:science and engineering", Springer Science & Business Media, 2007.
    [18] K. S. Reddy, K. P. Kumar, and P. B. Reddy, "The Effect Of Dielectric Loss Tangent On Radiation Characteristics Of Co-Axial Feed Rectangular Patch Antenna", International Journal of Scientific Engineering and Technology, vol. 3, no. 11, pp. 1402-1405, 2014.
    [19] E. C. Liang, "An Overview of High Q TE Mode Dielectric Resonators and Applications", MICROWAVE JOURNAL, vol. 58, no. 2, 2015.
    [20] B. Hakki and P. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range", IRE Transactions on Microwave Theory and Techniques, vol. 8, no. 4, pp. 402-410, 1960.
    [21] W. E. Courtney, "Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators", IEEE Transactions on Microwave Theory and Techniques, vol. 18, no. 8, pp. 476-485, 1970.
    [22] P. Wheless and D. Kajfez, "The use of higher resonant modes in measuring the dielectric constant of dielectric resonators", in Microwave Symposium Digest, 1985 IEEE MTT-S International, 1985, pp. 473-476: IEEE.
    [23] R. J. Collier and A. D. Skinner, "Microwave measurements", IET, 2007.
    [24] E. L. Ginzton, "Microwave measurements", McGraw-Hill, 1957.
    [25] M. Sebastian and H. Jantunen, "Low loss dielectric materials for LTCC applications: a review", International Materials Reviews, vol. 53, no. 2, pp. 57-90, 2008.
    [26] T. Deliyannis, Y. Sun, and J. K. Fidler, "Continuous-time active filter design", Crc Press, 1998.
    [27] R. L. Geiger, P. E. Allen, and N. R. Strader, "VLSI design techniques for analog and digital circuits", McGraw-Hill New York, 1990.
    [28] D. Grieg and H. Engelmann, "Microstrip-a new transmission technique for the klilomegacycle range", Proceedings of the IRE, vol. 40, no. 12, pp. 1644-1650, 1952.
    [29] J. S. G. Hong and M. J. Lancaster, "Microstrip filters for RF/microwave applications", John Wiley & Sons, 2004.
    [30] I. Rosu, "Microstrip, stripline, and CPW design", Available: in http://www.qsl.net/va3iul, 2013.
    [31] H. Nam, H. Lee, and Y. Lim, "A design and fabrication of bandpass filter using miniaturized microstrip square SIR", in TENCon 2001. Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology, 2001, vol. 1, pp. 395-398: IEEE.
    [32] 翁敏航 and 電機工程, "射頻被動元件設計", 臺灣東華, 2006.
    [33] B. D. Cullity and J. W. Weymouth, "Elements of X-ray Diffraction", American Journal of Physics, vol. 25, no. 6, pp. 394-395, 1957.
    [34] B. Hafner, "Energy Dispersive Spectroscopy on the SEM: a primer", Citing internet sources http://www.charfac.umn.edu/instruments/eds_on_sem_primer. pdf, 2006.
    [35] J. W. Edington, "Practical Electron Microscopy in Materials Science. Interpretation of Transmission Electron Micrographs", Macmillan Press, 1975.
    [36] H. Lewis and A. Ryan, "Printing as an Alternative Manufacturing Process for Printed Circuit Boards", INTECH Open Access Publisher, 2010.
    [37] E. S. Kim, S. H. Kim, and K. H. Yoon, "Dependence of thermal stability on octahedral distortion of (1-x)(Ca0.3Li0.119Sm0.427)TiO3-xLnAlO3 (Ln= Nd, Sm) ceramics", in Journal of the Ceramic Society of Japan, Supplement Journal of the Ceramic Society of Japan, Supplement 112-1, PacRim5 Special Issue, 2004, pp. S1645-S1649: The Ceramic Society of Japan.
    [38] H. S. Park, K. H. Yoon, and E. S. Kim, "Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1−xCax)[Fe0.5(Nb1−yTay)0.5]O3", Journal of the American Ceramic Society, vol. 84, no. 1, pp. 99-103, 2001.
    [39] Y. J. Wu and X. M. Chen, "Bismuth/Samarium Cosubstituted Ba6−3xNd8+2xTi18O54 Microwave Dielectric Ceramics", Journal of the American Ceramic Society, vol. 83, no. 7, pp. 1837-1839, 2000.
    [40] W. Li, L. Fang, Y. Sun, Y. Tang, J. Chen, and C. Li, "Preparation, Crystal Structure and Microwave Dielectric Properties of Rare-Earth Vanadates: ReVO4 (Re= Nd, Sm)", Journal of Electronic Materials, pp. 1-7.
    [41] R. D. Shannon, "Dielectric polarizabilities of ions in oxides and fluorides", Journal of Applied physics, vol. 73, no. 1, pp. 348-366, 1993.
    [42] J. Y. Chen, W. H. Hsu, and C. L. Huang, "Dielectric properties of magnesium oxide at microwave frequency", Journal of Alloys and Compounds, vol. 504, no. 1, pp. 284-287, 2010.
    [43] K. Song, P. Liu, H. Lin, W. Su, J. Jiang, S. Wu, J. Wu, Z. Ying and H. Qin, "Symmetry of hexagonal ring and microwave dielectric properties of (Mg1−xLnx)2Al4Si5O18+x (Ln = La, Sm) cordierite-type ceramics", Journal of the European Ceramic Society, vol. 36, no. 5, pp. 1167-1175, 2016.
    [44] H. Chen, B. Tang, S. Duan, H. Yang, Y. Li, H. Li and S. Zhang, "Microstructure and Microwave Dielectric Properties of Ba3.75Nd9.5Ti18-z(Mg1/3Nb2/3)zO54 Ceramics", Journal of Electronic Materials, vol. 44, pp. 1081-1087, 2015.
    [45] A. N. Unnimaya, E. K. Suresh, and R. Ratheesh, "Crystal structure and microwave dielectric properties of new alkaline earth vanadate A4V2O9 (A= Ba, Sr, Ca, Mg and Zn) ceramics for LTCC applications", Materials Research Bulletin, vol. 88, pp. 174-181, 2017.
    [46] R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, "Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic", Journal of the European Ceramic Society, vol. 25, no. 12, pp. 2865-2870, 2005.
    [47] C. H. Su, F. C. Lin, T. M. Chu, and C. L. Huang, "Structural characteristics and microwave dielectric properties of low-firing Ba(Co1−xMgx)2(VO4)2 (x = 0 – 1) ceramics", Journal of Alloys and Compounds, vol. 686, pp. 608-615, 2016.
    [48] H. Luo, W. Fang, L. Fang, W. Li, C. Li, and Y. Tang, "Microwave dielectric properties of novel glass-free low temperature firing ACa2Mg2V3O12 (A = Li, K) ceramics", Ceramics International, vol. 42, no. 8, pp. 10506-10510, 2016.
    [49] L. X. Pang, G. B. Sun, and D. Zhou, "Ln2Mo3O12 (Ln = La, Nd): A novel group of low loss microwave dielectric ceramics with low sintering temperature", Materials Letters, vol. 65, no. 2, pp. 164-166, 2011.
    [50] E. S. Kim, B. S. Chun, R. Freer, and R. J. Cernik, "Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics", Journal of the European Ceramic Society, vol. 30, no. 7, pp. 1731-1736, 2010.
    [51] D. Zhou, C. A. Randall, H. Wang, L. X. Pang, and X. Yao, "Microwave Dielectric Ceramics in Li2O–Bi2O3–MoO3 System with Ultra‐Low Sintering Temperatures", Journal of the American Ceramic Society, vol. 93, no. 4, pp. 1096-1100, 2010.
    [52] D. Zhou, L. X. Pang, J. Guo, Y. Wu, G. Q. Zhang, W. Dai, H. Wang and X. Yao, "New microwave dielectric ceramics BaLn2(MoO4)4 (Ln = Nd and Sm) with low loss", Journal of the American Ceramic Society, vol. 94, no. 9, pp. 2800-2803, 2011.
    [53] L. X. Pang, D. Zhou, J. Guo, Z. X. Yue, and X. Yao, "Microwave Dielectric Properties of (Li0.5Ln0.5)MoO4 (Ln = Nd, Er, Gd, Y, Yb, Sm, and Ce) Ceramics", Journal of the American Ceramic Society, vol. 98, no. 1, pp. 130-135, 2015.

    無法下載圖示 校內:2022-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE