簡易檢索 / 詳目顯示

研究生: 莊琇宇
Chuang, Hsiu-Yu
論文名稱: 訂單式生產系統之接單決策模式-納入顧客相關因素為分析觀點
A decision making structure for order acceptance in make-to-order environment:consider the perspective of customer-related factors.
指導教授: 林清河
Lin, Chin-Ho
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 接單決策訂單式生產系統顧客重要性
外文關鍵詞: OA decision, MTO production system, importance of customer
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於推陳出新的技術與產業的快速變遷,令許多企業皆處在高度競爭的經營環境中,而在此艱困情況下,欲脫穎而出的企業必須懂得如何保持或取得競爭優勢,以在有限的市場中獲取較高的利潤。

    於現今產業來說製造環節為獲取利潤的重要關鍵。該環節依據回應顧客訂單的不同方式分成數種生產系統。在眾多生產系統中,採取訂單式生產系統的企業比例逐年增高,其原由為此種生產方式較能產出符合顧客需求的商品,進而獲取較高的顧客滿意度,並解決存貨式生產所存在的最大缺陷,也就是減低過高的存貨成本,因此採取訂單式生產已蔚為一股風氣。然在此種生產系統下,常無法預測顧客的需求,故訂單可能在任何時間點被提出,而此時決策者需考量許多因素來決定是否接受該筆訂單。

    對企業來說,錯誤與草率的接單決策常成為無法獲利的潛在因素。長遠來說,此種錯誤決策亦可能成為壓倒企業經營的最後一根稻草,因此接單決策的重要性不可忽視。故許多學者陸續發展出許多決策系統或模式來協助管理者在面對接單問題時,能透過較系統化的方式作出選擇。但回顧過去研究可發現較少考量與顧客相關的觀點,因此本研究將納入「顧客重要性」與考量「接單決策對顧客之影響」來建構一接單決策模式。

    此接單決策模式包含三大部分:因新接訂單所增加之收入、因新接訂單所導致其它已接訂單的延遲或砍單損失之成本以及接單決策對於未來利潤的影響。透過這三大部分所得之結果,可提供決策者一個最佳的接單決策方案,可做為決策時的依循。

    Due to the rapid advance of technology and industry, many enterprises are in a highly competitive business environment. In such difficult circumstance, those who want to stand out must understand how to keep or gain a competitive advantage to obtain higher profits in a limited market.

    Nowadays, for many enterprises, the critical point to make profit depends on manufacturing. Base on the different responses of customer orders, manufacturing part can distribute into several production systems. In numerous production systems, the proportion of enterprises that adopt “Make to Order (MTO)” increases year by year. The reason for this phenomenon is that MTO can better fulfill customer need and improve customer satisfaction. Furthermore, MTO can also solve the drawback of Make to Stock (MTS). In other words, MTO can lower the inventory carrying cost of MTS. As a result, MTO becomes the top priority for enterprises. However, under MTO production systems, we are hardly to predict when customers will place an order. For this reason, decision-maker must consider more factors to determine whether to accept the orders or not.

    For enterprises, an incorrect order acceptance strategy often becomes a potential factor to make enterprises unprofitable. Therefore, there are many studies that develop decision support systems or models to help managers make systematic choice to order acceptance problem. However, only few studies consider the perspective of customer-related factors. As a result, "importance of customer" and "the impact of order acceptance strategy on customers” will be included to develop a decision model for order acceptance.

    This order-acceptance decision model includes three parts: the increased revenues by new-placed orders, delay and lost cost of existent-accepted orders and the impact on profit for the future by order acceptance strategy. The model will provide a better order-acceptance alternative for decision-maker.

    目錄 摘要 I AbstractII 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章、緒論1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究範圍與限制 5 1.4 研究流程 7 第二章、文獻探討 8 2.1 生產系統 8 2.1.1 訂單式生產系統 9 2.1.2 訂單式生產與接單決策之關聯 9 2.2 接單決策 10 2.2.1 一般接單決策 11 2.2.2 緊急訂單之接單決策 16 2.3決策分析工具 17 2.3.1 敏感度分析 17 第三章、研究方法 19 3.1 研究問題描述與研究架構 20 3.1.1 研究問題描述 20 3.1.2 研究架構 21 3.2 接單決策模式建構 22 3.2.1 符號定義 23 3.2.2 模式的假設與適用範圍 26 3.2.3 模式建構 27 3.2.4 模式分析 34 3.3小結 35 第四章、研究結果與分析 36 4.1 個案公司介紹 36 4.1.1個案公司選取 36 4.1.2個案公司問題描述 37 4.2 個案資料分析 38 4.2.1 數據擷取 38 4.2.2 模式運算過程 39 4.2.3 方案比較 43 4.3 敏感度分析 45 4.4小結 49 第五章、結論與建議 50 5.1 結論 50 5.2 管理意涵 51 5.3 研究限制與未來研究方向 51 參考文獻 53

    Behdani, B., Adhitya, A., Lukszo, Z. and Srinivasan, R. (2011). Negotiation-based approach for order acceptance in a multiplant specialty chemical manufacturing enterprise. Industrial & Engineering Chemistry Research, 50(9), 5086-5098.
    Chamodrakas, I., Alexopoulou, N. and Martakos, D. (2009). Customer evaluation for order acceptance using a novel class of fuzzy methods based on TOPSIS. Expert Systems with Applications, 36(4), 7409-7415.
    Chen, C. L. (2010, 13-16 July 2010). A heuristic model for justifying the acceptance of rush orders in multi-plants manufacturing supply chain with outsourcing. Paper presented at the Industrial Informatics (INDIN), 2010 8th IEEE International Conference on, Osaka, Japan.
    Ebadian, M., Rabbani, M., Jolai, F., Torabi, S. A. and Tavakkoli-Moghaddam, R. (2008). A new decision-making structure for the order entry stage in make-to-order environments. International Journal of Production Economics, 111(2), 351-367.
    Ebben, M. J. R., Hans, E. W. and Olde Weghuis, F. M. (2005). Workload based order acceptance in job shop environments. Or Spectrum, 27(1), 107-122.
    Ehteshami, B., Petrakian, R. G. and Shabe, P. M. (1992). Trade-offs in cycle time management:hot lots. IEEE Transactions on Semiconductor Manufacturing, 5(2), 101-106.
    Gharehgozli, A. H., Rabbani, M., Zaerpour, N. and Razmi, J. (2008). A comprehensive decision-making structure for acceptance/rejection of incoming orders in make-to-order environments. International Journal of Advanced Manufacturing Technology, 39(9-10), 1016-1032.
    Grasso, E. T. and Taylor, B. W. (1984). A SIMULATION-BASED EXPERIMENTAL INVESTIGATION OF SUPPLY TIMING UNCERTAINTY IN MRP SYSTEMS. International Journal of Production Research, 22(3), 485-497.
    Hadigheh, A. G. and Terlaky, T. (2006). Sensitivity analysis in linear optimization: Invariant support set intervals. European Journal of Operational Research, 169(3), 1158-1175.
    Hemmati, S. and Rabbani, M. (2010). Make-to-order/make-to-stock partitioning decision using the analytic network process. International Journal of Advanced Manufacturing Technology, 48(5-8), 801-813.
    Huang, S. M., Lu, M. S. and Wan, G. H. (2011). Integrated order selection and production scheduling under MTO strategy. International Journal of Production Research, 49(13), 4085-4101.
    Kannan, V. R., Handfield, R. B. and Tan, K. C. (1998). Supply chain management: supplier performance and firm performance. International Journal of Purchasing and Materials Management, 34(3), 2-9.
    Keefer, D. L., Kirkwood, C. W. and Corner, J. L. (2004). Perspective on decision analysis applications, 1990–2001. Decision Analysis, 1(1), 4-22.
    Kim, W. J., Park, C. K. and Park, S. (1999). An epsilon-sensitivity analysis in the primal-dual interior point method. European Journal of Operational Research, 116(3), 629-639.
    Kleijnen, J. P. C. (2005). An overview of the design and analysis of simulation experiments for sensitivity analysis. European Journal of Operational Research, 164(2), 287-300.
    Kumar, V. (2008). Customer Lifetime Value: The Path to Profitability (Vol. 2): Now Publishers Inc.
    La Londe, B. J. and Masters, J. M. (1994). Emerging logistics strategies: blueprints for the next century. International Journal of Physical Distribution & Logistics Management, 24(7), 35-47.
    Li, X., Wang, J. and Sawhney, R. (2012). Reinforcement learning for joint pricing, lead-time and scheduling decisions in make-to-order systems. European Journal of Operational Research, 221(1), 99-109.
    Mestry, S., Damodaran, P. and Chen, C. S. (2011). A branch and price solution approach for order acceptance and capacity planning in make-to-order operations. European Journal of Operational Research, 211(3), 480-495.
    Olhager, J. (2003). Strategic positioning of the order penetration point. International Journal of Production Economics, 85(3), 319-329.
    Parsaei, S., Keramati, M. A., Zorriassatine, F. and Feylizadeh, M. R. (2012). An order acceptance using FAHP and TOPSIS methods: A case study of Iranian vehicle belt production industry. International Journal of Industrial Engineering Computations, 3, 211-224.
    Porter, K., Little, D., Peck, M. and Rollins, R. (1999). Manufacturing classifications: relationships with production control systems. Integrated Manufacturing Systems, 10(4), 189-199.
    Rom, W. O. and Slotnick, S. A. (2009). Order acceptance using genetic algorithms. Computers & Operations Research, 36(6), 1758-1767.
    Slotnick, S. A. (2011). Order acceptance and scheduling: A taxonomy and review. European Journal of Operational Research, 212(1), 1-11.
    Slotnick, S. and Morton, T. (2007). Order acceptance with weighted tardiness. Computers & Operations Research, 34(10), 3029-3042.
    Sujana, P., Takahashib, K. and Morikawac, K. (2011). An integrated model of production planning and simultaneous negotiations for order acceptance decision. Paper presented at the 2nd International Conference on Industrial Engineering and Operations Management Kuala Lumpur, Malaysia.
    Wang, W. P. and Chen, Z. (2008). A neuro-fuzzy based forecasting approach for rush order control applications. Expert Systems with Applications, 35(1-2), 223-234.
    Wu, M. C. and Chen, S. Y. (1996). A cost model for justifying the acceptance of rush orders. International Journal of Production Research, 34(7), 1963-1974.
    Wu, M. C. and Chen, S. Y. (1997). A multiple criteria decision-making model for justifying the acceptance of rush orders. Production Planning & Control, 8(8), 753-761.
    Zorzini, M., Corti, D. and Pozzetti, A. (2008). W Due date (DD) quotation and capacity planning in make-to-order companies: Results from an empirical analysis. International Journal of Production Economics, 112(2), 919-933.

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE