簡易檢索 / 詳目顯示

研究生: 楊淵丞
Yang, Yuan-Cheng
論文名稱: 以臭氧水氧化法改善MHEMT特性
Improved MHEMT characteristics by ozone water oxidation
指導教授: 許渭州
Hsu, Wei-Chou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 54
中文關鍵詞: 變晶型高電子移動率電晶體臭氧水紐結效應氧化層
外文關鍵詞: kink effect, oxide layer, MHEMT, ozone water
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,提出了一種利用臭氧水處理蕭特基層的方法,並可操作於室溫、常壓而且機台成本較低的直接氧化法。臭氧水處理提供一種快速的氧化成長速率、較低介面狀態密度而且在InAlAs蕭特基層上將擁有較平坦、品質好的氧化層薄膜。InAlAs 氧化後表面粗糙度量測可由AFM與SEM得知。此外,利用臭氧水處理晶格常數匹配的InAlAs/InGaAs金屬-氧化層-半導體變晶型高電子移動率電晶體(MOS-MHEMT),元件的InAlAs蕭特基層將可產生一層較薄的原生氧化層。
    由於經過臭氧水處理所產生的原生閘極氧化層,擁有品質好且均勻性佳的特性,在汲極偏壓2 V的狀況下,最大異質轉導值可達390mS/mm,元件的閘極工作電壓擺幅也可提高至0.8 V。以能帶圖的角度來看,因為閘極氧化層有較高的能帶位障,所以可以有效壓抑紐結效應(Kink Effect)以及降低閘極的漏電流以增強元件在功率方面的應用。另ㄧ方面,經過臭氧水處理,元件的閘-源極崩潰電壓(VGD)可達-14.8 V,而量測到的最大輸出功率(Pout)為17.84dBm。元件閘極長度為1.2um,閘極寬度為200um而汲-源極間距為7um。
    最後,我們使用金氧半變晶型高電子移動率電晶體能夠滿足我們對於高功率方面的應用以及得到較寬廣的閘極電壓操作區域。

    Direct oxidation by using ozone water treatment was operated at room-temperature, atmospheric pressure and low-cost equipment are demonstrated in this thesis. Ozone water process presents a high growth rate, high quality nm-thickness insulating layer, low interface state density and smooth oxide film on InAlAs layer. Surface roughness of the oxidation layer was measured by AFM and SEM. In addition, a lattice matched InAlAs/InGaAs metal-oxide-semiconductor metamorphic high electron mobility transistor (MOS-MHEMT) with a thin InAlAs native oxide layer has been made.
    Due to the high quality and uniform oxidation film, the maximum extrinsic transconductance (gm max) 390 mS/mm at VDS = 2 V, gate voltage swing (GVS) is about 0.8 V. The breakdown voltage (VGD) approach -14.8 V and the output power performance is 17.84 dBm due to its higher barrier potential of gate oxide layer to suppressed the kink effect, lower gate leakage current and enhance power performance. The gate dimension and the drain-to-source spacing are 1.2 × 200 um2 and 7 um, respectively.
    Consequently, the MOS-MHEMT can fulfill the requirement of wide range of gate-voltage operation and high-power application at the same time.

    Abstract (Chinese) Abstract (English) Table Captions Figure Captions Chapter 1 Introduction.....1 Chapter 2 Conventional Metamorphic HEMTs.....3 2-1 The Layer Design of Metamorphic HEMT Structure.....4 2-1-1 Capping Layer.....4 2-1-2 Schottky Layer.....4 2-1-3 δ-doped Carrier Supply Layer.....5 2-1-4 Spacer Layer.....6 2-1-5 InGaAs Channel Layer.....6 2-1-6 Metamorphic Buffer Layer.....7 Chapter 3 Device Structures and Device Processes.....8 3-1 Material Growth.....8 3-2 Sample Orienting.....9 3-2-1 Mesa Isolation.....9 3-2-2 Source and Drain Metallization.....10 3-2-3 Ozone Oxidation Treatment.....11 3-2-4 Gate Schottky Contact.....11 Chapter 4 Experimental Results and Discussions.....12 4-1 Characterization of the oxide film.....12 4-2 DC Characteristics at 300K.....13 4-2-1 Hall Measurement.....14 4-2-2 Current-Voltage Characteristics.....15 4-2-3 Extrinsic Transconductance Characteristics....16 4-2-4 Two-terminal Breakdown Voltage Characteristics.....17 4-3 Microwave Characteristics.....18 4-4 Power Characteristics.....20 4-4-1 Device Linearity properties.....22 Chapter 5 Conclusion.....24 References.....25 Figures.....29

    References
    [1] C. Nguyen and M. Micovic, “The state-of-the-art of GaAs and InP power devices and amplifiers”, IEEE Trans. Electron. Devices, vol. 48, no. 4, pp. 472–478, 2001.
    [2] K. W. Lee, K. L. Lee, and X. L. Lee, “Improvement of Impact Ionization Effect and Subthreshold Current in InAlAs/InGaAs Metal-Oxide-Semiconductor Metamorphic HEMT With a Liquid-Phase Oxidized InAlAs as Gate Insulator”, IEEE Trans. Electron. Devices, vol. 54, no. 3, pp. 418–423, 2007.
    [3] F. Ali and A. Gupta, HEMTs and HBTs: Devices, Fabrication, and Circuits, Norwood: Artech House, pp.81-82, 1991.
    [4] A. Fathimulls, J. Abrahams, T. Loughran, and H. Hier, “High performance InAlAs/InGaAs HEMTs and MESFETs”, IEEE. Electron Device Lett., vol. 9, pp. 328-330, 1988.
    [5] S. R. Bahl, J. A. del Alamo, “Elimination of mesa sidewall gate leakage in InAlAs/InGaAs HFETs”, IEEE Trans. Electron Devices, vol. 13, no. 4, pp. 195-197, 1992.
    [6] S. R. Bahl, B.R. Bernett, and J. A. Alamo, “Doubly strained In0.41Al0.59As/n+-In0.65Ga0.35As HFET with high breakdown voltage”, IEEE. Electron Device Lett., vol. 14, no. 1, pp. 22-24, 1993.
    [7] M. Feng, D. R. Scherrer, P. J. Apostolakis, and J. W. Kruse, “Temperature Dependent Study of the Microwave Performance of 0.25um Gate GaAs MESFETs and GaAs Pseudomorphic HEMTs”, IEEE Trans. Electron Devices, vol. 43, p. 852, 1996.
    [8] R. E. Anholt, and S. E. Swirhum, “Experimental investigation of the temperature dependence of GaAs FET equivalent circuits”, IEEE Trans. Electron Devices, vol. 39, p. 2029, 1992.
    [9] R. Soares, GaAs MESFET Circuit Design, Boston and London: Artech House, pp. 287-290, 1988.
    [10] 鄧宗禹、蔡明蒔 ”以臭氧超純水清洗晶圓表面之簡介及應用” 毫微米元件實驗室 毫微米通訊第八卷第二期。
    [11] 陳心誼 “以臭氧水製程改善薄閘極氧化層特性之研究” 國立交通大學 電子工程研究所,民國91年。
    [12] T. Sugimura, T. Tsuzuku, T. Katsui, Y. Kasai, T. Inokuma, S. Hashimoto, K. Iiyama and S. Takamiya, “A preliminary study of MIS diodes with nm-thin GaAs-oxide layers”, Solid-State Electron., 43, pp. 1571-1576, 1999.
    [13] M. Takebe, K. Nakamura, N.C. Paul, K. Iiyama, and S. Takamiya, “GaAs-MISFETs With Insulating Gate Films Formed by Direct Oxidation and by Oxinitridation of Recessed GaAs Surfaces”, IEEE Electron Device, vol. 51, no. 3, pp. 311–316, 2004.
    [14] N. C. Paul, M. Takebe, M. Tametou, H. Seto, Y. Fujino, K. Iiyama and S. Takamiya “n-channel, p-channel, Depletion, Enhancement GaAs Metal-Insulator-Semiconductor Field Effect Transistors with Gate Films Formed by Oxi-nitridation of GaAs Surfaces”, International Conference on Indium Phosphide and Related Materials, pp. 246–249, 2005.
    [15] K. W. Lee, N. Y. Yang, M. P. Houng and Y. H. Wang, “Improved breakdown voltage and impact ionization in InAlAs/InGaAs metamorphic high-electron-mobility transistor with a liquid phase oxidized InGaAs gate”, Appl. Phys. Lett., 87, 263501, 2005.
    [16] E. I. Chen, N. Holonyak, Jr., and S. A. Maranowski “AlxGa1-xAs – GaAs metal-oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs”, Appl. Phy. Lett., vol. 66, pp. 2688-2690, 1995.
    [17] W. C. Hsu, D. H. Huang, Y. S. Lin, Y. J. Chen, J. C. Huang, and C. L. Wu, “Performance Improvement in Tensile-Strained In0.5Al0.5As/InxGa1-xAs/In0.5Al0.5As Metamorphic HEMT” , IEEE Trans. Electron Devices, vol. 53, no. 3, pp. 406–412, 2006.
    [18] J. C. Huang, W. C. Hsu, C. S. Lee, D. H. Huang and M. F. Huang, “Characteristics of δ-doped InAlAs/InGaAs/InP high electron mobility transistors with a linearity graded InxGa1-xAs channel”, Semicond. Sci. and Technol. 21, pp.619-625, 2006.
    [19] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, J. C. Huang, D. H. Huang, K. H. Su, Y. S. Lin, and C. L. Wu, “Characteristics of In0.425Al0.575As–InxGa1-xAs Metamorphic HEMTs With Pseudomorphic and Symmetrically-graded Channels”, IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1079–1086, 2005.
    [20] J. C. Huang, W. C. Hsu, C. S. Lee, D. H. Huang and Y. C. Yang, “High-Power-Density and High-Gain δ-Doped In0.425Al0.575As/In0.425Ga0.575As Low-Voltage for Operation”, Journal of The Electronchemical Society, 154 (3) H185-H190, 2007.
    [21] D. W Tu, S. Wang, J. S. M. Liu, K. C. Hwang, W. Kong, P. C. Chao and K. Nichols, “High-Performance Double-Recessed InAlAs/InGaAs Power Metamorphic HEMT on GaAs Substrate”, IEEE Microwave and Guided Wave Letters, vol. 9, no. 11, pp. 458-460, 1999.
    [22] C. K. Lin, J. C. Wu, W. K. Wang and Y. J. Chan, “Characteristics of InxAl1-xAs/InxGa1-xAs (x=50%,60%) metamorphic HEMTs on GaAs Substrates”, IEEE International Conference on Indium Phoshide and Related Materials 2004.
    [23] W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-Temperature Thermal Stability Performance in δ-Doped In0.425Al0.575As-In0.65Ga0.35As Metamorphic HEMT”, IEEE Electron Device Lett., vol. 26, no. 2, pp. 59-61, 2005.
    [24] D. C. Dumka, G. Cueva, W. E. Hoke, P. J. Lemonias, and I. Adesida, “0.13um GATE-LENGTH In0.52Al0.48As/In0.53Ga0.47As METAMORPHIC HEMTs ON GaAs SUBSTRATE”, IEEE Electron Device 2002.
    [25] Y. J. Chen, Z. B. Wang, K. H. Su, and W. C. Hsu, “In0.425Al0.575As/In0.65Ga0.35As Metamorphic HEMT on GaAs”, IEEE Poster Session 2004.
    [26] K. Iiyama, Y. kita, Y. Ohta, M. Nasuno, S. Takamiya, K. Higashimine, and N. Ohtsuka, “Fabrication of GaAs MISFET With nm-Thin Oxidized Layer Formed by UV and Ozone Process”, IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 1856–1862, 2002.
    [27] T. Suemitsu, T. Enoki, N. Sano, M. Tomizawa, and Y. Ishii, “An Analysis of the Kink Phenomena in InAlAs/InGaAs HEMT’s Using Two-Dimensional Device Simulation”, IEEE Trans. Electron Devices, vol. 45, no. 12, pp. 2390–2398, 1998.
    [28] N. C. Paul, K. Nakamura, H. Seto, K. Iiyama, and S. Takamiya, “Oxidation of InAlAs and Its Application to Gate insulator of InAlAs/InGaAs Metal Oxide Semiconductor High Electron mobility Transistor”, Jpn, J. Appl. Phys., vol. 44, no. 3, pp. 1174-1180, 2005.
    [29] J. Y. Wu, H. H. Wang, P. W. Sze, Y. H. Wang, and M. P. Houng, “A Planarized Shallow-Trench-Isolation for GaAs Devices Fabrication Using Liquid Phase Chemical Enhanced Oxidation Process”, IEEE Electron Device Lett., vol. 23, no. 5, pp. 237-239, 2002.
    [30] Y. J. Chen, W. C. Hsu, C. S. Lee, T. B. Wang, C. H. Tseng, J. C. Huang, D. H. Huang, and C. L. Wu, “Gate-alloy-related kink effect for metamorphic high-electron-mobility transistors”, Appl. Phy. Lett., vol. 85, pp. 5087-5089, 2004.
    [31] C. B. Demclo, D. C. Hall, G. L. Snider, D. Xu, G. Kramer, and N. E. Zein, “High electron mobility InGaAs-GaAs field effect transistor with thermally oxidized AlAs gate insulator”, IEEE Electron Letters, vol. 36, no. 1, 2000.
    [32] P. A. Parikh, S. S. Shi, J. Ibettson, E. L. Hu, and U. K. Mishra, “Hydrogenation of GaAs MISFETs with Al2O3 as the gate insulator”, IEEE Electron Letters, vol. 32, no. 18 , 1996.
    [33] K. Ouchi, T. Mishima, M. Kudo, and H. Ohta, “Gas-Source Molecular Beam Epitaxy Growth of Metamorphic InP/In0.5Al0.5As/In0.5Ga0.5As/InAsP High-Electron-Mobility Structures on GaAs Substrates”, Jpn. J. Appl. Phys. vol. 41, pp. 1004-1007, 2002.
    [34] J. C. Huang, W. C. Hsu, C. S. Lee, Y. J. Chen, D. H. Huang, and H. H. Chen, “Investigations of δ-Doped InAlAs/InGaAs/InP High-Electron-Mobility Transistors with Linearly Graded InxGa1-xAs Channel”, Jpn, J. Appl. Phys., vol. 44, no. 12, pp. 8305-8308, 2005.
    [35] M. Zaknoune, B. Bonte, C. Gaquiere, Y. Cordier, Y. Druelle, D. Thĕron, and Y. Crosnier, “InAlAs/InGaAs Metamorphic HEMT with High Current Density and High Breakdown Voltage”, IEEE Electron Device Lett., vol. 19, no. 9, pp. 345-347, 1998.
    [36] H. H. Wang, C. J. Huang, Y. H. Wang, and M. P. Houng, “Liquid Phase Chemical-Enhanced Oxidation for GaAs Operated Near Room Temperature”, Jpn, J. Appl. Phys., vol. 37, no. 1, pp. L67-L70, 1998.

    下載圖示 校內:2009-06-23公開
    校外:2012-06-23公開
    QR CODE