簡易檢索 / 詳目顯示

研究生: 何承恩
Ho, Cheng-En
論文名稱: 低損耗微波介電材料 (Mg1-xNix)2TiO4 在無線通訊元件之應用
Low-Loss Microwave Dielectrics Using (Mg1-xNix) 2TiO4 and Their Applications in the Wireless Communication Components
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 111
中文關鍵詞: 介電材料
外文關鍵詞: dielectric material
相關次數: 點閱:51下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中主要介紹兩大部分,第一部份將介紹低損耗的介電材料,且試圖調整溫度飄移係數使其為零;第二部份將介紹其在被動電路之應用,且實做於不同基板上探討元件尺寸的改善。
    第一部份首先要介紹(Mg0.95Ni0.05)2TiO4陶瓷系統之微波介電特性。由實驗中可得知(Mg0.95Ni0.05)2TiO4在1400℃燒結4小時可得到最佳之介電特性 ~16.4,Q׃~238000(at 9.8GHz), ~ -55 ppm/oC。由於此系統之 為負值,故選擇以 為正值且高介電係數及高品質因素的材料CaTiO3、SrTiO3添加,探討溫度飄移係數趨近零之最佳比例。
    第二部份首先介紹改良式雙極點帶通滤波器,我們利用電磁模擬軟體,來模擬設計在滤波器,其中心頻率 =2.4GHz、頻寬~10%。 此外, 我們將濾波器實做於FR4、Al2O3及0.92MNT-0.08CT(自製)三種基板上。以比較不同介電常數及品質因素使濾波器的電路尺寸及頻率響應上的差異性。

    There are two main subjects in this paper. First, we will discuss the low loss dielectric material, and try to make temperature coefficient of resonant frequency near zero. Second, there will be a discussion of microstrip filter and improvement of circuit size in different substrates.

    First, the microwave dielectric properties of (Mg0.95Ni0.05)2TiO4 have been investigated. The experiment results show that (Mg0.95Ni0.05)2TiO4 has the best properties at sintering temperature 1400℃ for four hours, which could reach the best dielectric properties ~ 16.4, Q×f ~ 238000(at 9.8GHz) and ~ -55 ppm/oC. Concerning about the negative value of , we choose adding the CaTiO3 ( ~ 800 ppm/oC) and SrTiO3 ( ~ 1300 ppm/oC) to adjust the value, then we could make temperature coefficient of resonant frequency near zero.

    Besides, hairpin planar filter were studied in second section which achieved spurious responses supression by properly choosing the different stepped- impedance ratio. We simulated it by electromagnetic simulation software at the setting of center frequency 2.4GHz and bandwidth 10%. Also, we try to realize that the improvement of frequency response and circuit size at the substitution of FR4, Al2O3 and 0.92MNT-0.08CT for the microstrip bandpass filter.

    摘要...I Abstract...II 誌謝...IV 目 錄...VI 圖 目 錄 ...X 表 目 錄 ...XV 第一章 緒論...1 1-1 前言 ...1 1-2 研究目的...1 第二章 介電材料原理...3 2-1 材料的燒結...3 2-1-1 材料燒結之擴散方式...3 2-1-2 燒結的種類...4 2-1-3 材料燒結之過程...5 2-2 尖晶石結構 (Spinel)...6 2-3 鈦鐵礦結構...8 2-4鈣鈦礦結構(Perovskite)...9 2-5 微波介電材料之特性...10 2-5-1 介電係數(Dielectric constant:K、εr)...11 2-5-2 品質因數(Quality factor:Q)...14 2-5-3共振頻率溫度飄移係數(Temperature coefficient of resonant frequency:τf)...16 2-6介電共振器(Dielectric resonator:DR)...17 第三章 微帶線及濾波器之原理...21 3-1 濾波器原理...21 3-1-1 濾波器的簡介...21 3-1-2 濾波器之通帶頻段及頻率響應...22 3-2 微帶線原理...25 3-2-1 微帶傳輸線的簡介...25 3-2-2 微帶線傳輸組態...25 3-2-3 微帶線各項參數公式計算及考量...26 3-2-4 微帶線的不連續效應...29 3-2-5 微帶線的損失...35 3-3 微帶線諧振器種類...36 3-3-1 λ/4短路微帶線共振器...37 3-3-2 λ/2開路微帶線共振器...38 3-4 共振器間的耦合形式...39 3-4-1 電場耦合...40 3-4-2 磁場耦合...43 3-4-3 混和耦合...46 3-5 諧振器間耦合量...49 3-6以四分之一波長開路傳輸線產生零點(open stub)...50 3-6-1四分之一波長開路殘段...50 3-6-2文獻探討...51 第四章 實驗程序與量測方法...54 4-1 微波介電材料的製備...54 4-1-1粉末的製備與球磨...55 4-1-2粉末的煆燒...55 4-1-3粉末的混相調配...55 4-1-4加入黏劑、過篩...55 4-1-5壓模成型、去黏劑及燒結...56 4-2微波介電材料的量測與分析...56 4-2-1 密度測量...56 4-2-2 X-Ray分析...57 4-2-3 SEM、EDS分析...57 4-2-4介電特性量測與分析...57 4-2-5共振頻率溫度飄移係數之測量...65 4-3 濾波器之製作與量測...65 第五章 實驗結果與討論...68 5-1 (Mg1-xNix) 2TiO4微波特性之探討...69 5-1-1 (Mg1-xNix) 2TiO4系統之XRD分析結果...69 5-1-2 (Mg1-xNix) 2TiO4系統之晶格常數分析結果...70 5-1-3 (Mg1-xNix) 2TiO4系統之之SEM、EDS分析結果...70 5-1-4 (Mg1-xNix) 2TiO4系統之密度分析結果...75 5-1-5 (Mg1-xNix) 2TiO4系統之介電特性分析結果...76 5-2 (1-x)(Mg0.95Ni0.05) 2TiO4 -xCaTiO3之微波特性探討...79 5-2-1 (1-x)(Mg0.95Ni0.05) 2TiO4 -xCaTiO3系統之XRD分析結果...79 5-2-2 (1-x)(Mg0.95Ni0.05) 2TiO4 -xCaTiO3系統之SEM、EDS分析結果...81 5-2-3 (1-x)(Mg0.95Ni0.05) 2TiO4 -xCaTiO3系統之密度分析結果...85 5-2-4 (1-x)(Mg0.95Ni0.05) 2TiO4 -xCaTiO3系統之介電特性分析結果...86 5-3 (1-x)(Mg0.95Ni0.05) 2TiO4 -xSrTiO3之微波特性探討...88 5-2-1 (1-x)(Mg0.95Ni0.05) 2TiO4 -xSrTiO3系統之XRD分析結果...88 5-2-2 (1-x)(Mg0.95Ni0.05) 2TiO4 -xSrTiO3系統之SEM、EDS分析結果...89 5-2-3 (1-x)(Mg0.95Ni0.05) 2TiO4 -xSrTiO3系統之密度分析結果...94 5-2-4 (1-x)(Mg0.95Ni0.05) 2TiO4 -xSrTiO3系統之介電特性分析結果...94 5-4濾波器的模擬與實作...97 5-4-1使用FR4(玻璃纖維基板)之模擬與實作結果...98 5-4-2使用Al2O3之模擬與實作結果...100 5-4-3使用自製基板(0.92MNT–0.08CT)之模擬與實作結果...102 第六章 結論...106 參考文獻...108

    [1]H. M. O’bryan, J. Thomson, J. K. Plourde, “A New BaO-TiO2 Compound with Temperature-Stable High Permittivity and Low Microwave Loss,” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
    [2]G. Wolfram, H. E. Göbel, “Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics (x+y+z=2),” Mater. Res. Bull., 16 [11] 1455–1463 (1981).
    [3]Y. Ohishi, Y. Miyauchi, H. Ohsato, K. I. Kakimoto, “Controlled Temperature Coefficient of Resonant Frequency of Al2O3–TiO2 Ceramics by Annealing Treatment,” J. J. Appl. phys., 43 [6A] L749–L751 (2004).
    [4]J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, H. J. Kim, “Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q Values,” J. J. Appl. phys., 33 [9B] 5466–5470 (1994).
    [5]C. L. Huang, T. J. Yang, C. C. Huang, “Low Dielectric Loss Ceramics in the ZnAl2O4–TiO2 System as a Compensator,” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
    [6]W. F. Smith, 劉品均(譯), 施佑蓉(譯), “材料科學與工程,” 第三版, 高立圖書, (2005).
    [7]J. W. Cahn, R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles,” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
    [8]W. J. Huppmann, G. Petzow, “Sintering Processes,” Plenum Press, (1979).
    [9]W. A. Deer, R. A. Howie, J. Zussman, “An Introduction to the Rock-forming Minerals,” Second Edition, (1992).
    [10]N. J. van der Laag, M. D. Snel, P. C. M. M. Magusin, G. de With, “Structural, Elastic, Thermophysical and Dielectric Properties of Zinc Aluminate (ZnAl2O4),” J. Eur. Ceram. Soc., 24 [8] 2417–2424 (2004).
    [11]余樹楨, “晶體之結構與性質,” 渤海堂文化公司, (2007).
    [12]吳朗, “電工材料,” 滄海書局, (1998).
    [13]張盛富, 戴明鳳, “無線通信之射頻被動電路設計,” 全華出版社, (1998).
    [14]鄭景太, “淺談高頻低損失介電材料,” 工業材料, 176期, (2001).
    [15]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉園出版社, (1988).
    [16]R. D. Richtmyer, “Dielectric Resonators,” J. Appl. Phys., 10 391–398 (1939).
    [17]S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 16 [4] 218–227 (1968).
    [18]D. M. Pozar, “Microwave Engineering,” Third Edition, John Wiley & Sons, (2005).
    [19]D. Kajfez, A. W. Glisson, J. James, “Computed Modal Field Distributions for Isolated Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
    [20]D. Kajfez, “Basic Principle Give Understanding of Dielectric Waveguides and Resonators,” Microwave System News., 13 152–161 (1983).
    [21]D. Kajfez and P. Guillon, “Dielectric Resonators,” Artech House (1989).
    [22]R. L. Geiger, P. E. Allen, N. R. Strader, “VLSI Design Techniques for Analog and Digital Circuits,” McGraw-Hill, (1990).
    [23]R. A. Pucel, D. J. Masse, C. P. Hartwig, “Losses in Microstrip,” 16 [6] 342–350 (1968).
    [24]J. S. Hong, M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications,” John Wiley & Sons, (2001).
    [25]G. Kompa, “Practical Microstrip Design and Applications,” Artech House, (2005).
    [26]K. C. Gupta, R. Garg, I. Bahl, P. Bhartia, “Microstrip Lines and Slotlines,” Second Edition, Artech House, (1996).
    [27]J. S. Hong, M. J. Lancaster, “Microstrip Filters for RF/Microwave Applications,” John Wiley & Sons, (2001).
    [28]G. L. Matthaei, L. Young, E. M. T. Jones, “Microwave Filters, Impedance Matching Networks and Coupling Structures,” Artech House, (1980).
    [29]E. J. Denlinger, “Losses of Microstrip Lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
    [30]Jae-Ryong Lee” New Compact Bandpass Filter Using Microstrip Resonators with Open Stub Inverter,”IEEE microwave magazine, October 2000
    [31]Moon-Seok Chung, Il-Soo Kim, and Sang-Won Yun” Varactor-Tuned Hairpin Bandpass Filter with Enhanced Stopband Performance” Proceedings of Asia-Pacific Microwave Conference 2006
    [32]B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
    [33]W. E. Courtney, “Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
    [34]P. Wheless, D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
    [35]Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
    [36]A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, D. Suvorov, “High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4,” J. Am. Ceram. Soc., 89 [11] 3441–3445 (2006).
    [37]C. L. Huang and Cheng-En Ho“Microwave Dielectric Properties of (Mg1-xNix)2TiO4 (x=0.02–0.1) Ceramics,”Int. J. Appl. Ceram. Technol., 1–7 (2010)
    [38]C. L. Huang and Ming-Hung Weng “Improved high Q value of MgTiO3–CaTiO3 microwave dielectric ceramics at low sintering temperature,” Materials Research Bulletin 36, 2741–2750 (2001)
    [39]Pai-hsuan SUN, Tetsuro NAKAMURA, Yue Jin SHAN, Yoshiyuki INAGUMA, Mitsuru ITOH and Toshiki KITAMURA , “Dielectric Behavior of (1-x)LaAlO3– xSrTiO3 Solid Solution System at Microwave Frequencies”, Jpn. J. Appl. Phys., vol.37 pp.5625-5629, 1998.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE