| 研究生: |
吳佳麗 Wu, Jia-Li |
|---|---|
| 論文名稱: |
邊界元素法分析三維圓板結構: 軟體視窗化設計與其分析 Boundary element analysis for the structure of a 3D plate: The design of window based software and its analysis |
| 指導教授: |
夏育群
Shiah, Yu-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 邊界元素法 、三維異向性靜彈性體 、等向性材料 、異向性材料 |
| 外文關鍵詞: | Boundary Element Method, 3D anisotropic elastostatics, Isotropic material, Anisotropic material |
| 相關次數: | 點閱:53 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用邊界元素法(Boundary Element Method, BEM)作為理論基礎,運用其分析方法的優勢,針對目標模型進行網格劃分並加以分析,分析標的物選用工具底板作為標的物,幫助設計者在設計幾何尺寸不再以靠經驗值,而是透過有理論基礎的分析軟體進行設計。為了增加研究多元性分析的材料涵蓋了等向性材料與異向性材料,再將其結果與ANSYS軟體的模擬結果進行比對分析,確保誤差在預期範圍內,並且針對多種邊界條件做比較。最終將數據進行彙整。將所蒐集之數據做為Visual Basic視窗後的大數據,將參數匯入並建立分析視窗,提供使用者一個清晰易理解的圖形視窗介面(GUI)。
This study aims to use the boundary element method (BEM) as the theoretical basis. Use its analysis method to mesh and analyze the target model.
Select common tool base plate as the analysis target to assist designers in the design process.
The geometric dimensions of tool base plate are no longer based on empirical values, but on theoretical analysis as the basis for design
To increase the variability of the studied materials, in addition to the steel and aluminum materials usually analyzed as tool base materials, anisotropic materials were added. Analysis examples cover isotropic and anisotropic materials.
Compare and analyze the results with the simulation results of ANSYS software to ensure that the error is within the expected range and compare with various boundary conditions.
Finally, the analyzed data are sorted and compared, and the collected data are used as big data behind the Visual Basic window. Import parameters and create analysis windows. In order to be more consistent with practical applications, the model dimensions have been programmed to equal proportions and defined dimensions. Designed to provide users with a clear and easy-to-understand graphical window interface (GUI)..
[1]. Riley, K. F., Hobson, M. P., & Bence, S. J. (2006). Mathematical methods for physics and engineering: a comprehensive guide. Cambridge university press.
[2]. Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: its basis and fundamentals. Elsevier.Segond, D., & Tafreshi, A. (1998). Stress analysis of three-dimensional contact problems using the boundary element method. Engineering analysis with boundary elements, 22(3), 199-214.
[3]. Aliabadi, M. H. (2002). The boundary element method, volume 2: applications in solids and structures (Vol. 2). John Wiley & Sons.
[4]. Constitutive Equations. MIT AERO ASTRO, Lecture Notes. Accessed 22.01.2021
[5]. Antes, H. (2010). A short course on boundary element methods.
[6]. Jones, R. M. (2018). Mechanics of composite materials. CRC press.
[7]. Rivlin, R. S., & Ericksen, J. L. (1997). Stress-deformation relations for isotropic materials. Collected Papers of RS Rivlin: Volume I and II, 911-1013.
[8]. Sadd, M. H. (2009). Elasticity: theory, applications, and numerics. Academic Press.
[9]. VISION WIDE TECH CO. LTDhttps://www.visionwide-tech.com/en/work_05.html
[10]. Ting, T. C. T., & Lee, V. G. (1997). The three-dimensional elastostatic Green's function for general anisotropic linear elastic solids. The Quarterly Journal of Mechanics and Applied Mathematics, 50(3), 407-426.
[11]. Swamy, A. R. K., Ramesha, A., Kumar, G. V., & Prakash, J. N. (2011). Effect of particulate reinforcements on the mechanical properties of Al6061-WC and Al6061-Gr MMCs. Journal of minerals and materials characterization and engineering, 10(12), 1141.
[12]. Pan, E., Chen, C. S., & Amadei, B. (1997). A BEM formulation for anisotropic half-plane problems. Engineering Analysis with Boundary Elements, 20(3), 185-195.
[13]. King, T. R., Blackketter, D. M., Walrath, D. E., & Adams, D. F. (1992). Micromechanics prediction of the shear strength of carbon fiber/epoxy matrix composites: the influence of the matrix and interface strengths. Journal of Composite Materials, 26(4), 558-573.
[14]. 夏育群、陳春來,「邊界元素法之入門介紹」,高立圖書有限公司,中華民國 93 年 12 月 15 日
[15]. Hao, H., Wu, C., & Zhou, Y. (2002). Numerical analysis of blast-induced stress waves in a rock mass with anisotropic continuum damage models part 1: equivalent material property approach. Rock Mechanics and Rock Engineering, 35, 79-94.
[16]. 施威銘研究室,「新觀念 Microsoft Visual Basic 2017 程式設計」,旗標科技股份有限公司,西元 2017 年 3 月 24 日
[17]. Tonon, F., Pan, E., & Amadei, B. (2001). Green’s functions and boundary element method formulation for 3D anisotropic media. Computers & Structures, 79(5), 469-482.
[18]. Luo, J. F., Liu, Y. J., & Berger, E. J. (1998). Analysis of two-dimensional thin structures (from micro-to nano-scales) using the boundary element method. Computational Mechanics, 22(5), 404-412.
[19]. Cao, X. J., Pyoun, Y. S., & Murakami, R. (2010). Fatigue properties of a S45C steel subjected to ultrasonic nanocrystal surface modification. Applied Surface Science, 256(21), 6297-6303.
[20]. Zhang, Z., Shan, J. G., Tan, X. H., & Zhang, J. (2016). Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061. International journal of adhesion and adhesives, 70, 142-151.
[21]. Shiah, Y. C. (2014). Analytical transformation of the volume integral in the boundary integral equation for 3D anisotropic elastostatics involving body force. Computer Methods in Applied Mechanics and Engineering, 278, 404-422.