| 研究生: |
江秉宸 Chiang, Bin-Chen |
|---|---|
| 論文名稱: |
開放級配瀝青混凝土鋪面績效 Pavement Performance and Open-Graded Asphalt Concrete |
| 指導教授: |
陳建旭
Chen, Jian-Shiuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 176 |
| 中文關鍵詞: | 多孔隙瀝青混凝土(PAC) 、轉爐石(BOF) 、鋪面績效 、透水量 、噪音量 、車轍量 、平坦度 、Clegg衝擊 、抗滑度 |
| 外文關鍵詞: | Porous Asphalt Concrete (PAC), Basic Oxygen Furnace (BOF) Slag, Pavement Performance, Open-Graded Friction Course (OGFC), Functionality, Durability |
| 相關次數: | 點閱:168 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣是個雨量豐沛的國家,年平均降雨量約2,500mm,為全球平均值的2.6倍。在高降雨的環境中,高速公路路面若有積水,將增加行車風險。多孔隙瀝青混凝土(Porous Asphalt Concrete,PAC)為開放級配(Open Graded)混合料,提供高孔隙率及較粗糙的表面紋理,降低行車噪音,使雨水快速排出,減少路面積水,增加摩擦力,提升行車安全性。瀝青混凝土傳統採用天然粒料,但我國天然資源有限,為使國家能永續發展,必須尋求適合之替代材料,減少對天然資源的依賴。近年來國內外研究將煉鋼製程產生的副產品-轉爐石(Basic Oxygen Furnace, BOF) 混拌於瀝青混凝土中,而轉爐石應用於多孔隙瀝青混凝土,對於低水分敏感性、低噪音、抗車轍、抗滑性等特性,皆有良好成效。
本研究評估開放級配鋪面績效,包含(1)國道8號之多孔隙瀝青混凝土PAC路段、(2)國道1號五股楊梅高架橋PAC路段、(3)國道1號岡山段改質轉爐石PAC路段、(4)國道1號南下楠梓交流道第二出口匝道轉爐石開放級配摩擦層OGFC路段,評估項目為「功能性」、「耐久性」及「安全性」等試驗,並以不同材料作比較。
研究結果中,顯示國道8號PAC鋪面透水效果比OGFC鋪面佳,且標稱粒徑越大,其透水效果越好。其中,以鋪設4cm厚之PAC(NMAS 19mm)在透水能力、減噪效果及抗車轍能力表現最佳;五股楊梅高架橋之新工和養護路段皆使用超過4年,透水量仍保持900ml/15sec以上,且無剝脫現象,其中,養護路段受限於養護時間,仍可維持透水量,尤其顯得難能可貴;國道1號岡山段所有檢測路段的透水量、噪音量、車轍量、衝擊值皆以轉爐石優於天然粒料;平坦度及抗滑度則以天然粒料優於轉爐石,而由於為轉爐石PAC薄膜仍較為完整,因此其BPN值較天然粒料PAC稍低;國道1號楠梓交流道之鋪面粒料種類對於車轍量的變化之影響不大,車轍量均低於12.5mm以下,屬於輕微車轍,其中又以改質轉爐石路段為最低,顯示轉爐石材料之特性有助於發揮互鎖功能,使鋪面可保持良好的耐久性。
Porous Asphalt Concrete has high porosity and rough surface texture, can reduce traffic noise, and can quickly discharge rain, reduce road excess surface water, and increase friction, enhance traffic safety. The steel production process by-product "Basic Oxygen Furnace Slag" mixed in PAC, for Drainability, Noise reduction effectiveness, rutting resistant, skid resistance and other characteristics, all have good results. This study evaluates the pavement performance of Open-Praded Asphalt Concrete, including (1) PAC pavement of National Highway No. 8. (2) PAC pavement of National Highway No. 1 Wugu & Yangmei viaduct. (3) BOF-PAC pavement of National Highway No. 1 Gangshan section. (4) BOF Open-Graded Friction Course Pavement of National Highway No. 1 Nanzi Interchange, the assessment of the pavement performance as "Functionality", "Durability" and "Safety", and to Comparison of different materials.
Studies have shown that in National Highway No. 8 of the drainability is PAC pavement is better than OGFC Pavement. Wugu and Yangmei viaduct use more than 4 years, the water penetration is still 900ml/15sec above, and no peeling phenomenon. National Highway No. 1 Gangshan section of all test sections in the drainability test, noise test, rutting test, Clegg impact test are the BOF is better than natural aggregate. National Highway No. 1 Nanzi Interchange of the types of aggregate for the change in the amount of rutting has little effect, All test sections of the rutting volume are less than 12.5mm, and among them, the BOF-L section is best. BOF can maintain a good purability of the pavement.
小島逸平(1995),「排水性鋪裝」,日本瀝青協會,第66頁。
中央大學(2013),「PAC路面試鋪工程材料試驗及檢測」,中壢。
中華技術期刊(2013),「五股楊梅拓建工程技術」,財團法人中華顧問工程司,第98期。
中華鋪面工程學會(2010),「轉爐石應用於瀝青混凝土鋪面使用手冊」,中華鋪面工程學會。
中聯資源股份有限公司(2012),「轉爐石應用於改質瀝青混凝土之成效」,中聯資源股份有限公司技術與訓練,第37卷2期,第35-44頁。
中聯資源股份有限公司(2016),「轉爐石特性-物化特性」,http://www.chc.com.tw/pe.html,105年12月31日瀏覽。
公共工程施工綱要規範(2011),「第02898章 標線」,行政院公共工程委員會,第4頁。
公共工程施工綱要規範(2013),「第02798章 多孔隙瀝青混凝土鋪面」,行政院公共工程委員會,第10-11頁。
公共工程施工綱要規範(2017),「第02742章 瀝青混凝土鋪面」,行政院公共工程委員會,第14、29頁。
日本道路協會(1997),「排水性鋪裝技術指針(案)」,日本。
平出純一(1998),「排水性舗装の取り組み」,日本瀝青協會,第2~3頁。
交通部臺灣區國道高速公路局(2011),「高速公路養護手冊」,交通部臺灣區國道高速公路局技術規範,第3-9頁。
李柏賢(2015),「分析多孔隙瀝青混凝土績效之影響因素」,國立成功大學土木工程研究所碩士論文,台南。
夏明勝(2007),「瀝青混凝土鋪面特性與噪音防制」,臺灣公路工程,第33卷第11期-508。
孫揚洲(2010),「多孔隙瀝青鋪面績效及生命週期經濟效益評估」,國立成功大學土木工程研究所碩士論文,台南。
陳建旭、王慶雄(2011),「Clegg衝擊試驗評估鋪面結構之成果分析」,臺灣公路工程,第37卷第4-5期,第30-44頁。
華光工程顧問股份有限公司(2013),「排水性(多孔隙)瀝青混凝土配比設計試驗報告」,高雄。
黃博仁(2001),「排水性瀝青混合料鋪面試驗路段之成效評估」,國立中央大學土木工程研究所碩士論文,桃園。
蔡柏棋,徐登科(2014),「台灣常用爐石與工程應用實務」,技師報,No.938,台灣省土木技師公會,新北市。
蔡攀鰲(2004),「瀝青混凝土」三民書局,台北。
轉爐石應用於瀝青混凝土鋪面研討會(2011),「轉爐石應用於瀝青混凝土鋪面使手冊及注意事項」,第3-7頁。
Alvarez, A.E., Martin, A.E. and Estakhri, C. (2011). “A Review of Mix Design and Evaluation Research for Permeable Friction Course Mixtures,” Construction and Building Materials, Vol.25, pp.108- 113.
Alvarez, A.E., Martin, A.E., Estakhri, C. and Izzo, R. (2009). “Evaluation of Durability Tests for Permeable Friction Course Mixtures,” International Journal of Pavement Engineering, Vol.11, pp.49-60.
Chen, J.S. and Huang, C.C. (2010). "Effect of Surface Characteristics on Bonding Properties of Bituminous Tack Coat," Transportation Research Record: Journal of the Transportation Research Board, No. 2180, pp.142-149.
Cooley Jr., L.A. (2009). “Performance and Maintenance of Permeable Friction Courses; Vol. III Annotated Literature Review,” NCHRP Project 9-41, Burns Cooley Dennis, Inc., Transportation Research Board, Washington, D.C.
Elisabete, F., Paulo, P., Luís de Picado-Santosb and Adriana, S. (2009). “Traffic Noise Changes due to Water on Porous and Dense Asphalt Surfaces,” Road Materials and Pavement Design, Vol.10, pp.587-607.
Euroslag (2016), http://www.euroslag.com/researchlibrarydownloads/ downloads/ , The EUROSLAG Association, viewed 24 December 2016.
Henry, J.J. (2000). “Evaluation of Pavement Friction Characteristics,” Transportation Research Board, NCHRP Synthesis 291, National Research Council, Washington, D.C.
Herman, L. , Withers, J. and Pinckney, E. (2006) “Surfacing Retexture to Reduce Tire-Road Noise for Existing Concrete Pavements,” In Transportation Research Record: Journal of the Transportation Research Board, No. 1983, pp.51-58.
Hossam, F. H., Salim, A., and Ramzi, T. (2005). “Evaluation of Open-Graded Friction Course Mixtures Containing Cellulose Fibers and Styrene Butadiene Rubber Polymer,” Journal of Materials in Civil Engineering, Vol.17, pp.416-422.
Huber, G.(2000). “Performance Survey on Open-Graded Friction Course Mixes.” Transportation Research Board, NCHRP Synthesis 284, National Research Council, Washington, D.C.
Kandhal, P. S., and Hoffman, G. L. (1997). “Evaluation of Steel Slag Fine Aggregate in Hot-Mix Asphalt Mixtures,” Transportation Research Record, n 1583, pp. 28-36.
Kühn, M., and Behmenburg, H. (2000). “Decreasing the Scorification of Chrome,” Report EUR 19382, Primary Steelmaking, European Commission 39, Luxembourg.
Lee, C.S.Y., and Fleming, G.G. (1996). “Measurement of Highway- Related Noise,” U.S. Department of Transportation, FHWA-PD-96- 046.
Liu, K. W. , Alvarez, A. E. , Martin, A. E. , Dossey, T. , Smit, A. and Estakhri, C. K. (2009). “Synthesis of Current Research on Permeable Friction Courses: Performance, Design, Construction, and Maintenance”, Report 0-5836-1, Texas Transportation Institute, Austin, Texas.
Lou, Y. (2003). “Effect of Pavement Temperature on Frictional Properties of Hot-Mix-Asphalt Pavement Surfaces at the Virginia Smart Road”, Master of Science Thesis, Virginia Polytechnic Institute, Virginia State University.
McDaniel, R.S., Thornton, W.D. and Dominguez, J.G. (2004). Field Evaluation of Porous Asphalt Pavement, Report No. SQDH 2004-3, North Central Superpave Center, Purdue University, West Lafayette.
Mohammad, L. N., Negulescu, I. I., Wu, Z., Daranga, C., Daly, W. H., and Abadie, C. (2003) “Investigation of The Use of Recy-cled Polymer Modified Asphalt Binder in Asphalt Concrete Pavements,” Journal of the Association of Asphalt Paving Technologists, Vol.72, pp.551-594.
Nakanishi, H., Asano, K. and Goto, K. (2000) “Study on Im-provement in Durability of Porous Asphalt Concrete,” Proceeding of Road Engineering and Association of Asian and Australasia, Tokyo, Japan.
Ohkawa, H., Sato, T., and Hokari, K. (1993). “Study on the Estimation of Permeability Coefficient of Drain Asphalt,” Proceedings of the Japan Society of Civil Engineers, No. 478, pp.101-108.
Oliver J.W.H. (2009). “Factors Affecting the Correlation of Skid Testing Machines and A Proposed Correlation Framework,” Road and Transport Research, Vol.18, pp.39-48.
Ongel, A., Kohler, E. and Harvey, J. (2008). “Principal Components Regression of Onboard Sound Intensity Levels,” Journal of Transportation Engineering, ASCE, Vol.134, No.11, pp.459-466.
Panda, M. and Mazumdar, M. (1999) “Engineering Properties of EVA-Modified Bitumen Binder for Paving Mixes,” Journal of Materials in Civil Engineering, Vol.11, pp.131-137.
Pasetto, M.(2000). “Porous Asphalt Concretes with Added Microfibres,” 2nd Eurasphalt & Eurobitumen Congress, Beacelona, Spain, pp.438-447.
Shen, D. H., Wu, C. M., and Du, J,C., (2009). “Laboratory Investigation of Basic Oxygen Furnace Slag for Substitution of Aggregate In Porous Asphalt Mixture,” Construction and Building Materials, Vol.23, pp.453-461.
Takahashi, S. (2013). “Comprehensive Study on the Porous Asphalt Effects on Expressways in Japan: Based on Field Data Analysis in the Last Decade”, Road Materials and Pavement Design, Vol. 14(2), 239–255
Tan, S. A., T. F. Fwa, and K. C. Chai. (2004). “Drainage Consid-erations for Porous Asphalt Surface Course Design”, Journal of the Transportation Research Board, Transportation Re-search Record No. 1868, pp.142–149.
Tappeiner, W.J. (1993). Open-Graded Asphalt Friction Course, NAPA IS115.
Watson, D., A. Johnson and D. Jared. (1998). “Georgia De-partment of Transportation’s Progress in Open-Graded Friction Course Development,” Transportation Research Record 1616, pp.30-35
Yoshikuni, O. and Takshi, T. (1995) “Present Status Asphalt on Espressway in Japan”, Proceedings of 8th Road Engineering Association of Asia and Australasia, Vol.1, pp.301-306.
校內:2022-07-15公開