簡易檢索 / 詳目顯示

研究生: 林玉陞
Lin, Yu-Sheng
論文名稱: 最大次聚合體問題之交換法則啟發式演算法設計與分析
A Swap-Based Heuristics for the Maximum k-Plex Problem
指導教授: 謝孫源
Hsieh, Sun-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 46
中文關鍵詞: 次聚合體問題啟發式演算法圖形演算法NP完全問題社群網路
外文關鍵詞: Clique relaxation, k-plex, heuristic algorithm, graph algorithm, social network, NP-complete
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 次聚合體問題是在一張無向圖 G 中給定一正整數 k ,找出一個子集合 S,使得 S 在 G 中的誘導子圖 (induced subgraph)每個點的鄰居個數至少會有 S 的點數減去 k 個,在圖中找出一組點數最多的次聚合體即為最大次聚合體問題。透過這個圖形問題可以幫助我們了解社群網路的架構 。在這篇文章中,我們針對這個問題提出一個基於交換法則的啟發式演算法,從產生一個隨機挑選的初始解開始,我們在不同情況下用使用三種交換算子來增加現有解的大小。我們在許多圖上跑時間我們的演算法,從實驗數據中顯示,基於交換法則的啟發式演算法可以找到很好的解,與前人的方法比較來看,我們的演算法在密度大的圖中勝過他們。

    The maximum k-plex problem is intended to relax the clique de nition with maximum cardinality. It helps people understand the structures of networks by considering them a problem of graph clustering; therefore, it is a useful model for social network analysis. In this paper, we propose a swap-based heuristic algorithm for the maximum k-plex problem. Starting with a randomly selected solution, we use three types of swap operators to en-
    large our current solution in di erent situations. The results of experiments conducted on various graphs from two benchmarks demonstrated that our proposed algorithm achieved desirable performance on speci c graphs compared with other algorithms.

    Abstract in Chinese i Abstract in English ii Acknowledge iii Contents v List of Tables vii List of Figures ix 1 Introduction 1 2 Preliminaries 5 3 The Proposed Method 8 3.1 General Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Initial Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4 Classi cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5 Intensi cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6 Diversi cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7 Tabu Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 Experimental Results 20 4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.2 Experimental Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3 Computational Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5 Conclusion 27 Bibliography 28

    [1] J. Abello, M. G. Resende, S. Sudarsky, (2002, April). Massive quasi-clique detection.
    In Latin American symposium on theoretical informatics (pp. 598-612). Springer,
    Berlin, Heidelberg.
    [2] R. D. Alba, (1973). A graph-theoretic de nition of a sociometric clique. Journal of
    Mathematical Sociology, 3(1), 113-126.
    [3] B. Balasundaram, S. Butenko, I. V. Hicks. (2011). Clique relaxations in social network
    analysis: The maximum k-plex problem. Operations Research, 59(1), 133-142.
    [4] J. M. Bourjolly, G. Laporte, G. Pesant, (2000). Heuristics for nding k-clubs in an
    undirected graph. Computers and Operations Research, 27(6), 559-569.
    [5] M. Brunato, H. H. Hoos, R. Battiti, (2007, December). On e ectively nding max-
    imal quasi-cliques in graphs. In International conference on learning and intelligent
    optimization (pp. 41-55). Springer, Berlin, Heidelberg.
    [6] M. S. Chang, L. H. Chen, L. J. Hung, Y. Z. Liu, P. Rossmanith, S. Sikdar, (2014).
    AnO (1:4658n)-time exact algorithm for the maximum bounded-degree-1 set prob-
    lem. In Proceedings of the 31st workshop on combinatorial mathematics and compu-
    tation theory (pp. 9-18).
    [7] K. R. Gujjula, K. A. Seshadrinathan, A. Meisami. (2014). A Hybrid Metaheuristic
    for the Maximum k-Plex Problem.
    [8] D. S. Johnson, M. A. Trick, (Eds.). (1996). Cliques, coloring, and satis ability: sec-
    ond DIMACS implementation challenge, October 11-13, 1993 (Vol. 26). American
    Mathematical Soc..
    [9] D. S. Johnson, J. K. Lenstra, A. R. Kan, (1978). The complexity of the network
    design problem. Networks, 8(4), 279-285.
    [10] R. D. Luce, (1950). Connectivity and generalized cliques in sociometric group struc-
    ture. Psychometrika, 15(2), 169-190.
    [11] B. McClosky, I. V. Hicks. (2012). Combinatorial algorithms for the maximum k-plex
    problem. Journal of combinatorial optimization, 23(1), 29-49.
    [12] Z. Miao, B. Balasundaram. (2017). Approaches for nding cohesive subgroups in
    large scale social networks via maximum k-plex detection. Networks, 69(4), 388-407.
    [13] R. J. Mokken, (1979). Cliques, clubs and clans. Quality and quantity, 13(2), 161-173.
    [14] H. Moser, R. Niedermeier, M. Sorge, (2012). Exact combinatorial algorithms and
    experiments for nding maximum k-plexes. Journal of combinatorial optimization,
    24(3), 347-373.
    [15] J. Pattillo, A. Veremyev, S. Butenko, V. Boginski, (2013). On the maximum quasi-
    clique problem. Discrete Applied Mathematics, 161(1-2), 244-257.
    [16] M. G. Resende, C. C. Ribeiro, (2010). Greedy randomized adaptive search proce-
    dures: Advances, hybridizations, and applications. In Handbook of metaheuristics
    (pp. 283-319). Springer, Boston, MA.
    [17] S. B. Seidman, (1983). Network structure and minimum degree. Social networks,
    5(3), 269-287.
    [18] S. B. Seidman and B. L. Foster, A graph-theoretic generalization of the clique con-
    cept, The Journal of Mathematical Sociology, 1978, p.139{154.
    [19] H. Yu, A. Paccanaro, V. Trifonov, M. Gerstein, (2006). Predicting interactions in
    protein networks by completing defective cliques. Bioinformatics, 22(7), 823-829.
    [20] Y. Zhou, J. K. Hao. (2017). Frequency-driven tabu search for the maximum s-plex
    problem. Computers and Operations Research, 86, 65-78.

    無法下載圖示 校內:2023-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE